GM Service Manual Online
For 1990-2009 cars only

Circuit Description

The throttle position (TP) sensor is used by the PCM to determine the throttle plate angle for various engine management systems. The TP sensor is a potentiometer type sensor with 3 circuits, a 5-volt reference circuit, a low reference circuit, and a signal circuit. The PCM provides the TP sensor with a 5-volt reference circuit and a low reference circuit. Rotation of the TP sensor rotor from the closed throttle position to the wide open throttle (WOT) position provides the PCM with a signal voltage from less than 1 volt to more than 4  volts through the TP sensor signal circuit. If the PCM detects an excessively high signal voltage, this diagnostic trouble code (DTC) will set.

Conditions for Running the DTC

The ignition is ON.

Conditions for Setting the DTC

    • The TP sensor signal voltage is more than 4.8 volts.
    • The above conditions are present for longer than 1 second.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Test Description

The number below refer to the step number on the diagnostic table.

  1. An internally shorted EGR valve could cause a high voltage condition on the 5-volt reference circuit.

DTC P0123 Throttle Position (TP) Sensor Circuit High Voltage

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

  1. Turn ON the ignition, with the engine OFF.
  2. With a scan tool, observe the TP sensor voltage parameter with the throttle closed.

Does the scan tool indicate that the TP sensor voltage is more than the specified value?

4.8 V

Go to Step 4

Go to Step 3

3

  1. Observe the Freeze Frame/Failure Records data for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text or as close to the Freeze Frame/Failure Records data that you observed.

Does the DTC fail this ignition?

--

Go to Step 4

Go to DTC P1121

4

  1. Turn OFF the ignition.
  2. Disconnect the TP sensor.
  3. Turn ON the ignition, with the engine OFF.
  4. With a scan tool, observe the TP sensor voltage parameter.

Does the scan tool indicate that the TP voltage is at the specified value?

0 V

Go to Step 5

Go to Step 8

5

With a DMM, test the TP sensor 5-volt reference circuit for voltage.

Does the DMM indicate that the TP voltage parameter is at the specified value?

5 V

Go to Step 6

Go to Step 9

6

Connect a test lamp between the TP sensor low reference circuit and battery positive voltage.

Does the test lamp illuminate?

--

Go to Step 10

Go to Step 7

7

Test the low reference circuit of the TP sensor for a high resistance or for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 18

Go to Step 15

8

Test the signal circuit of the TP sensor for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 18

Go to Step 15

9

Test all 5-volt reference circuits for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 18

Go to Step 10

10

  1. Connect a DMM between the TP sensor 5-volt reference circuit and the TP sensor low reference circuit.
  2. With a scan tool, command the EGR valve to 100% while observing the DMM.

Did you observe a change in voltage while commanding the EGR?

--

Go to Step 11

Go to Step 14

11

  1. Disconnect the EGR valve harness connector.
  2. With the DMM still connected, observe voltage while commanding the EGR to 100%.

Did you observe a change in voltage while commanding the EGR?

--

Go to Step 13

Go to Step 12

12

Replace the EGR valve, refer to Exhaust Gas Recirculation Valve Replacement .

Did you complete the replacement?

--

Go to Step 17

--

13

Repair the short between the EGR Solenoid Control circuit and the 5-volt reference circuit. Refer to Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 18

__

14

Inspect for poor connections at the harness connector of the TP sensor. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 18

Go to Step 16

15

Inspect for poor connections at the harness connector of the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 18

Go to Step 17

16

Replace the TP sensor. Refer to Throttle Position Sensor Replacement .

Did you complete the replacement?

--

Go to Step 15

--

17

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 18

--

18

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 19

Go to Step 2

19

With a scan tool, observe the stored in information, Capture info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK