Engine vibration is usually due to one or more of the following conditions:
• | First-order engine imbalance |
• | Inherent engine firing sequence |
• | Inherent shaking engine forces |
• | Engine-driven accessories |
Because these vibrations are engine-speed related, they are also normally torque sensitive. These vibrations may appear and disappear at different vehicle or road speeds, but will always appear at the same engine speed.
For example, if a customer states that a vibration is present at 40 km/h (25 mph), 64 km/h (40 mph), and again at 104 km/h (65 mph), and that the symptoms of the vibration are similar at all of these speeds, the vibration is probably engine-speed related. Any disturbance or vibration that is present during the following road tests would be considered engine-speed related:
• | The Neutral run-up test |
• | The downshift test |
• | The brake torque test |
Any vibration that is present during the Neutral coast-down test is not engine-speed related. The engine-related vibrations covered in this diagnosis are engine-speed sensitive only.
Engine imbalance is a condition that exists when a component that rotates at crankshaft speed is either unbalanced or has excessive runout. In rare cases, the crankshaft may be unbalanced. Balancing the component or correcting the runout may bring the disturbance to an acceptable level.
• | Vehicle shake at low speeds of 500-1,200 rpm, or 8-20 Hz |
• | Roughness and BOOM at higher speeds of 1,200-3,000 rpm, or 20-50 Hz |
• | Vibration usually detected during the Neutral run-up test |
4.1. | Mark the location of the torque converter to the flywheel. |
4.2. | Disconnect the torque converter from the flywheel and push the converter back from the flywheel. |
4.3. | Tie up the converter, away from the flywheel. |
4.4. | Perform the Neutral run-up test again. Refer to Types of Road Test . Observe the flywheel. |
4.4.1. | Visually inspect from the side for any wobble or lateral runout. |
4.4.2. | If any wobble or lateral runout exists, replace the flywheel. |
4.5. | If the vibration is eliminated by disconnecting the torque converter, the converter should be re-indexed in three different positions. If the disturbance still exists after this procedure, replace the torque converter. Refer to Transmission Replacement. |
4.6. | If the vibration still exists, inspect the propeller shaft runout. Refer to Front Wheel Driveline Vibrations . |
4.7. | If the vibration still exists, inspect the harmonic balancer. |
4.8. | If the vibration still exists, the problem is related to residual engine imbalance. Refer to Correcting Residual Engine Imbalance below. |
• | Correct factory indexing (the white paint spot on the flywheel and the pressure plate should line up). |
• | Warping |
• | Balance |
Firing frequency is a term used to describe the pulses created as the engine fires each cylinder. All engines have a firing frequency, but the object is to keep these disturbances from entering the passenger compartment. Initially, inspect for the following conditions:
• | The engine and the exhaust system are mounted in a relaxed position. |
• | All of the mounts and hangers should be in good condition and correct for the application. |
• | No components, hoses, or lines are grounding to the frame or to the body. |
Important: The frequency of these disturbances will depend on the number of cylinders. The engine order will always be equal to one-half the number of cylinders. This is because a four-stroke engine requires two complete revolutions of the crankshaft in order to fire all of the cylinders.
For example, a V8 engine will fire cylinders 1, 3, 5, and 7 on the first revolution. Cylinders 2, 4, 6, and 8 will fire on the second revolution. This results in 4 firing pulses per revolution of the crankshaft, or fourth order.
Condition | Engine Speed (RPM) | Any Engine First Order (Hz) | 4-Cylinder Second Order (Hz) | 6-Cylinder Third Order (Hz) | 8-Cylinder Fourth Order (Hz) |
---|---|---|---|---|---|
Shake | 500 750 1000 1500 | 8.3 12.5 16.6 25 | 16.6 25 33.3 50 | 24.9 37.5 49.8 75 | 33.2 50 66.4 100 |
Roughness | 2000 2500 | 33.3 41.6 | 66.6 83.2 | 99.9 124.8 | 133.2 166.4 |
Buzz | 3000 3500 4000 | 50 58.3 66.6 | 100 110.6 132.4 | 150 174.9 199.8 | 200 233.2 266.4 |
The following are symptoms of engine firing frequency:
• | The vibration may be torque sensitive. |
• | The vibration is engine-speed related. |
• | The vibration is heard as a boom or a moan. |
• | The vibration is felt as a shake, roughness, or buzz (depending on the number of cylinders). |
• | The vibration excites the resonance of a system or a component, causing the system or the component to have a narrow rpm range. |
The key to correcting these types of complaints is to isolate the vibration from the passenger compartment or the body.
The key to correcting these types of complaints is to isolate the vibration from the passenger compartment or body. While duplicating the vibration, look closely for witness marks due to a rubbing component. Sometimes adjusting or tightening a component will be all that is necessary. Other times you may have to replace the component. Check for the following?
Replace the mounts as needed. Refer to the Engine Mechanical Sub-Section in the Service Manual.
Replace as needed. Refer to the Automatic Transmission Sub-Section in the Service Manual.
Exhaust systems can expand 50-100mm (1-2 inches) when hot.
3.1. | Remove the hangers one at a time. |
3.2. | Adjust or replace as needed. |
5.1. | Isolate the hoses from the body. |
5.2. | Install the retainers. |
11.1. | Loosen the mounts and hangers and ensure the exhaust flexible coupling is free to move. |
11.2. | Settle the powertrain by shifting from DRIVE to REVERSE. |
11.3. | Tighten all fasteners with the powertrain in the relaxed position. |
Some residual vibrations may be normal. Compare the vibrations with a similar vehicle in order to get a feel for what is commercially acceptable, preferably with the customer present. Refer to bulletins for updates on the use of mass damper weights for specific applications.
Engine Order | L3 | L4 (without Balance Shaft) | L4 (with Balance Shaft) | L6 | V6 60° & V6 90° (with Balance Shaft) | V6 90° (without Balance Shaft) | V8 90° |
---|---|---|---|---|---|---|---|
½ Order Torque Sensitive | Single Cylinder Misfire | Single Cylinder Misfire | Single Cylinder Misfire | Single Cylinder Misfire | Single Cylinder Misfire EGR/Fuel Variance | Single Cylinder Misfire EGR/Fuel Variance | Single Cylinder Misfire |
1st Order Imbalance | Normal | Abnormal | Abnormal | Abnormal | Abnormal | Normal | Abnormal |
1.5 Order Torque Sensitive | Normal | -- | -- | -- | Bank-to-Bank EGR/Fuel Variance | Bank-to-Bank EGR/Fuel Variance | -- |
2nd Order | Normal | Normal | Abnormal | Abnormal | Normal | Normal | Abnormal |
2nd Order Torque Sensitive | -- | Normal | Normal | -- | -- | -- | Bank-to-Bank EGR/Fuel Variance |
3rd Order Torque Sensitive | Normal (Small Amount) | -- | -- | Normal | Normal | Normal | -- |
4th Order Torque Sensitive | -- | Normal (Small Amount) | Normal (Small Amount) | -- | -- | -- | Normal |
Just like firing frequency, some engine disturbances are the result of normal operation. Some engines can have additional inherent vibration due to the following elements:
• | The cylinder arrangement |
• | The design |
• | The firing order |
Before attempting to repair a disturbance, compare the disturbance to another known good vehicle. Although some vibrations could be normal, the vibrations may not be pleasant to the customer.
The key to resolve an inherent engine disturbance is to isolate the vibration from the passenger compartment. Follow the same procedures as outlined for the engine firing frequency-related vibrations. Refer to Engine Firing Frequency-Related Diagnosis.
Engine-driven accessories that exhibit vibration pose some special challenges. For example, the drive belts can no longer be removed one at a time in order to isolate the condition. If removing the belt (1) eliminates the vibration, reinstall the belt and operate each accessory one at a time in order to see which has the most effect on the vibration. However, one component may affect another because the drive belt drives all of the accessories.
Inspect the accessory load to ensure that the load is not exciting the engine firing frequency.
3.1. | Install the drive belt. |
3.2. | Operate each accessory one at a time in order to see which has the most effect on the vibration. |
3.3. | Use the Smart Strobe feature on the EVA to determine which accessory is causing the vibration. |
3.3.1. | Clip the inductive pickup of the timing light to the "loop" on the EVA, connect to a 12-volt power source. |
3.3.2. | From the Main menu, select Smart Strobe. |
3.3.3. | Mark the object you suspect is causing the vibration. |
3.3.4. | Enter an initial test point strobe frequency between 10-200 Hz (600-12000 rpm). Press the 0 key to toggle the rpm. |
3.3.5. | Press the strobe light trigger as you point the strobe light at the spinning object, then press the EVA Up or Down arrow keys to manually adjust the rpm until only one mark is seen and the object appears stationary. As the test is run, the strobe speed must be manually adjusted to match the actual object rpm. |
3.1. | From the Main menu, select Auto Mode. |
3.2. | Select the suspected source of the vibration: Engine RPM. |
3.3. | Move the cursor to the number of engine cylinders, press Enter. |
• | Select the incremental step you want to increase/decrease RPM by, press Enter. |
• | View the frequency ranges applicable for the RPM selected, press Enter to go to the active data screen or Exit to go back to select the RPM if you are not within a valid range. |
• | Press the arrow UP or DOWN key to adjust the on-screen RPM on the active data screen to match the actual engine RPM. |