GM Service Manual Online
For 1990-2009 cars only

Circuit Description

VIN K

The manifold absolute pressure (MAP) sensor responds to changes in the intake manifold pressure, which gives an indication of the engine load. The MAP sensor has a 5-volt reference circuit, a low reference circuit, and a signal circuit. The powertrain control module (PCM) supplies 5 volts to the MAP sensor on the 5-volt reference circuit, and provides a ground on the low reference circuit. The MAP sensor provides a signal to the PCM on the MAP sensor signal circuit, which is relative to the pressure changes in the manifold. With low MAP, such as during idle or deceleration, the PCM should detect a low MAP sensor signal voltage. With high MAP, such as during ignition ON, engine OFF, or wide open throttle (WOT), the PCM should detect a high MAP sensor signal voltage. This MAP sensor will indicate pressure between 10-104 kPa. The MAP sensor is also used in order to calculate the barometric pressure (BARO) when the ignition switch is turned ON, with the engine OFF. The BARO reading may also be updated whenever the engine is operated at WOT. The PCM monitors the MAP sensor signal for voltage outside of the normal range. If the PCM detects a MAP sensor signal voltage that is excessively high, DTC P0108 sets.

VIN 1

The MAP sensor responds to changes in intake manifold pressure which gives an indication of the engine load. The MAP sensor has a 5-volt reference circuit, a low reference circuit, and a signal circuit. The PCM supplies 5 volts to the MAP sensor on the 5-volt reference circuit, and provides a ground on the low reference circuit. The MAP sensor provides a signal to the PCM on the MAP sensor signal circuit, which is relative to the pressure changes in the manifold. With low MAP, such as during idle or deceleration, the PCM should detect a low MAP sensor signal voltage. With high MAP, such as WOT, the PCM should detect a high MAP sensor signal voltage. This MAP sensor will indicate pressure between 8-208 kPa. The MAP sensor is also used in order to calculate the BARO when the ignition switch is turned ON, with the engine OFF. The PCM monitors the MAP sensor signal for voltage outside of the normal range. If the PCM detects a MAP sensor signal voltage that is excessively high, DTC P0108 sets.

DTC Descriptor

This diagnostic procedure supports the following DTC:

DTC P0108 Manifold Absolute Pressure (MAP) Sensor Circuit High Voltage

Conditions for Running the DTC

VIN K

    • DTCs P0121, P0122, P0123 are not set.
    • The engine has been running for a length of time that is determined by the start-up coolant temperature. The length of time ranges from 2 minutes at less than -30°C (-22°F) to 1 second at more than 30°C (86°F).
    • The throttle angle is less than 2 percent when engine speed is less than 1,500 RPM.
        OR
    • The throttle angle is less than 10 percent when the engine speed is more than 1,500 RPM.

VIN 1

    • DTCs P0121, P0122, P0123 are not set.
    • The engine has been running for a length of time that is determined by the start-up coolant temperature. The length of time ranges from 2 minutes at less than -30°C (-22°F) to 1 second at more than 30°C (86°F).
    • The throttle angle is less than 2 percent when the engine speed is less than 900 RPM.
        OR
    • The throttle angle is less than 30 percent when the engine speed is more than 900 RPM.

Conditions for Setting the DTC

    • The PCM detects that the MAP sensor signal voltage is more than 4.2 volts for 3 seconds.
    • This diagnostic runs continuously once the above conditions have been met.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Diagnostic Aids

This DTC may set due to poor idle characteristics. A possible cause may be uncontrolled fueling due to an open or high resistance in the heated oxygen sensor (HO2S) 1 low signal circuit. Before replacing any component, ensure that this condition does not exist.

Test Description

The number below refers to the step number on the diagnostic table.

  1. This step tests for improper throttle position (TP) sensor operation.

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

Connector End View Reference: Engine Controls Connector End Views or Powertrain Control Module Connector End Views

1

Did you perform the Diagnostic System Check - Vehicle?

--

Go to Step 2

Go to Diagnostic System Check - Vehicle

2

  1. Turn ON the ignition, with the engine OFF.
  2. Observe the TP sensor parameter with the scan tool.
  3. Depress the accelerator pedal slowly until the throttle is in the wide open position.
  4. Release the accelerator pedal slowly until the throttle is returned to the closed position.
  5. Repeat this procedure several times.

Does the TP sensor parameter increase steadily to more than the first specified value, then decrease steadily returning to less than the second specified value?

98%

1%

Go to Step 3

Go to DTC P0121

3

  1. Start the engine.
  2. Observe the MAP sensor parameter with the scan tool.

Is the voltage more than the specified value?

4.2 V

Go to Step 5

Go to Step 4

4

  1. Observe the Freeze Frame/Failure Records for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 5

Go to Intermittent Conditions

5

Inspect the manifold absolute pressure (MAP) sensor vacuum source for the following conditions:

    • Leaks
    • Restrictions
    • Faulty connections

Did you find and correct the condition?

--

Go to Step 18

Go to Step 6

6

Monitor the DTC information with the scan tool.

Is DTC P0641 also set?

--

Go to Step 10

Go to Step 7

7

Test for an intermittent and for a poor connection at the MAP sensor. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs .

Did you find and correct the condition?

--

Go to Step 18

Go to Step 8

8

  1. Turn OFF the ignition.
  2. Disconnect the MAP sensor electrical connector.
  3. Turn ON the ignition, with the engine OFF.
  4. Observe the MAP sensor parameter with the scan tool.

Is the voltage less than the specified value?

0.1 V

Go to Step 9

Go to Step 11

9

  1. Turn OFF the ignition.
  2. Disconnect the engine coolant temperature (ECT) sensor.
  3. Connect a jumper wire between each of the terminals in the MAP sensor harness connector and the corresponding terminal at the MAP sensor. Refer to Using Connector Test Adapters .
  4. Turn ON the ignition, with the engine OFF.
  5. Measure the voltage from the low reference circuit of the MAP sensor at the jumper wire terminal to a good ground with a DMM. Refer to Measuring Voltage Drop .

Is the voltage more than the specified value?

0.2 V

Go to Step 12

Go to Step 14

10

  1. Turn OFF the ignition.
  2. Disconnect the MAP sensor electrical connector.
  3. Turn ON the ignition, with the engine OFF.
  4. Observe the MAP sensor parameter with the scan tool.

Is the voltage less than the specified value?

0.1 V

Go to DTC P0641

Go to Step 11

11

Important: Disconnecting the powertrain control module (PCM) may eliminate the short during testing.

Important: The MAP sensor may have been damaged if the circuit was shorted to a voltage source.

Test the MAP sensor signal circuit between the PCM and the MAP sensor for a short to voltage. Refer to Circuit Testing and Wiring Repairs .

Did you find and correct the condition?

--

Go to Step 18

Go to Step 15

12

Test the low reference circuit between the PCM and the MAP sensor for high resistance or an open. Refer to Circuit Testing and Wiring Repairs .

Did you find and correct the condition?

--

Go to Step 18

Go to Step 13

13

Test for an intermittent and for a poor connection at the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs .

Did you find and correct the condition?

--

Go to Step 18

Go to Step 17

14

Test the heated oxygen sensor (HO2S) 1 low signal circuit for an open or high resistance. Refer to Circuit Testing and Wiring Repairs .

Did you find and correct the condition?

--

Go to Step 18

Go to Step 16

15

Test the HO2S 1 low signal circuit for an open or high resistance. Refer to Circuit Testing and Wiring Repairs .

Did you find and correct the condition?

--

Go to Step 18

Go to Step 17

16

Replace the MAP sensor. Refer to Manifold Absolute Pressure Sensor Replacement .

Did you complete the replacement?

--

Go to Step 18

--

17

Replace the PCM. Refer to Control Module References in Computer/Integrating Systems for replacement, setup, and programming.

Did you complete the replacement?

--

Go to Step 18

--

18

  1. Clear the DTCs with a scan tool.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed form the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 2

Go to Step 19

19

Observe the Capture Info with a scan tool.

Are there any DTCs that have not been diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List - Vehicle

System OK