GM Service Manual Online
For 1990-2009 cars only

Fuel Tank


Object Number: 32153  Size: SH

The fuel tank is used to store fuel for the vehicle. The tank is located in the rear of the vehicle and is held in place by two metal straps that are attached to the underbody. The fuel tank is made of steel and is coated internally with a special corrosion inhibitor. Due to the internal coating of the fuel tank, the fuel tank is not repairable.The fuel tank shape includes a reservoir in order to maintain a constant supply of fuel around the fuel pump strainer during low fuel conditions and aggressive vehicle maneuvers. A fuel tank filler pipe check-valve tube is attached to the fuel tank and extends from the fuel tank inlet to the reservoir. The fuel tank filler pipe check-valve is located inside the fuel tank filler pipe check-valve tube and prevents fuel from splashing back out of the fuel tank filler pipe during refueling.

Fuel Tank Filler Pipe


Object Number: 61745  Size: SH

In order to prevent refueling with leaded fuel, the fuel tank filler pipe (2) has a built-in restrictor and deflector. The fuel tank filler pipe is connected to the fuel tank filler extension (1) by clamps.

Fuel Tank Filler Pipe Cap

Notice: Use a fuel tank filler pipe cap with the same features as the original when a replacement is necessary. Failure to use the correct fuel tank filler pipe cap can result in a serious malfunction of the fuel system.


Object Number: 61124  Size: SH

Object Number: 61119  Size: SH

The fuel tank filler pipe is equipped with a threaded-type fuel tank filler pipe cap. The threaded part of the fuel tank filler pipe cap requires several turns counterclockwise before it can be removed. A built-in torque-limiting device prevents over tightening of the fuel tank filler pipe cap. In order to install the fuel tank filler pipe cap, turn the fuel tank filler pipe cap clockwise until at least 3 clicking noises are heard. The clicking noises signal that the correct torque has been reached and that the fuel tank filler pipe cap is fully seated.

The Enhanced EVAP fuel tank pipe cap has a tether connected to the fuel filler door.

Fuel Sender Assembly

The modular fuel sender assembly is attached to the top of the fuel tank, and extends from the top of the fuel tank to the reservoir.


Object Number: 50611  Size: SH

The modular fuel sender assembly (5) consists of the following major components: a fuel pump, a fuel sender strainer (3), a fuel pump strainer, a roll-over valve (2), fuel level sensor (4), and a fuel tank pressure sensor.


Object Number: 50562  Size: SH

The fuel sender consists of the float , the wire float arm, and, the rheostat. The rheostat is mounted on the fuel sender and located in series with the voltage supply circuit from the fuel gage or body control module (BCM). As the position of the float varies with the fuel level, the rheostat produces a variable resistance between the fuel gage or BCM and ground. The fuel gage converts this variable resistance into the fuel level reading display on the instrument panel.

The roll-over valve is pressed into the EVAP pipe of the fuel sender and is not serviced separately. The roll-over valve prevents fuel from entering the EVAP canister if the vehicle rolls over by shutting OFF the EVAP pipe to the evaporative emission canister.

Fuel Pump


Object Number: 49371  Size: SH

A high pressure gerotor fuel pump is mounted to the fuel sender inside the fuel tank. The fuel is pumped to the engine at a specified flow and pressure through the fuel pump. Excess fuel is returned to the fuel tank by a return pipe. The fuel pump delivers a constant flow of fuel to the engine even during low fuel conditions and aggressive vehicle maneuvers.

The electric fuel pump operation is controlled by the Powertrain Control Module (PCM) through a fuel pump relay. Refer to Fuel Pump Electrical Circuit Diagnosis or Fuel Pump Electrical Circuit Diagnosis .

Fuel Pump Strainer


Object Number: 50673  Size: SH

A woven plastic fuel pump strainer is attached to the lower end of the fuel pump in the fuel tank. The functions of the fuel pump strainer are to filter contaminants and to wick fuel.

The life of the fuel pump strainer is generally considered to be that of the fuel pump. The fuel pump strainer is self-cleaning and normally requires no maintenance. Fuel stoppage at this point indicates that the fuel tank contains an abnormal amount of sediment or water, in which case the tank should be thoroughly cleaned. Refer to Fuel System Cleaning .

In-Pipe Fuel Filter


Object Number: 12628  Size: SH

A fuel filter is used in the fuel feed pipe ahead of the fuel injection system. The fuel filter is mounted directly in front of the fuel tank. The fuel filter housing (1) is constructed of steel with a quick-connect fitting at the inlet of the fuel filter and a threaded fitting at the outlet of the fuel filter. The threaded fitting is sealed with an O-ring, which is replaceable. The filter element (2) is made of paper and is designed to trap particles suspended in the fuel that may damage the injection system.

There is no service interval for in-pipe fuel filter replacement. Only replace the in-pipe fuel filter if it is restricted.

Fuel Feed and Fuel Return Pipes

The fuel feed and fuel return pipes carry fuel from the fuel sender assembly to the fuel injection system and back to the fuel sender assembly.

Nylon Fuel Pipes

Caution: In order to Reduce the Risk of Fire and Personal Injury:

   • If nylon fuel pipes are nicked, scratched or damaged during installation, Do Not attempt to repair the sections of the nylon fuel pipes. Replace them.
   • When installing new fuel pipes, Do Not hammer directly on the fuel harness body clips as it may damage the nylon pipes resulting in a possible fuel leak.
   • Always cover nylon vapor pipes with a wet towel before using a torch near them. Also, never expose the vehicle to temperatures higher than 115°C (239°F) for more than one hour, or more than 90°C (194°F) for any extended period.
   • Before connecting fuel pipe fittings, always apply a few drops of clean engine oil to the male pipe ends. This will ensure proper reconnection and prevent a possible fuel leak. (During normal operation, the O-rings located in the female connector will swell and may prevent proper reconnection if not lubricated.)

Nylon fuel pipes are designed to perform the same job as the steel or rubber fuel lines they replace. Nylon pipes are constructed to withstand maximum fuel system pressure, exposure to fuel additives and changes in temperature. There are two sizes used: 3/8" ID for the fuel feed, and 5/16" ID for the fuel return and are used on the modular sender. Nylon fuel pipes are somewhat flexible and can be formed around gradual turns. However, if forced into sharp bends, nylon pipes will kink and restrict fuel flow. Also, once exposed to fuel, nylon pipes may become stiffer and are more likely to kink if bent too far. Special care should be taken when working on a vehicle with nylon pipes.

Quick Connect Fittings

Quick-connect type fittings provide a simplified means of installing and connecting fuel system components. Depending on the vehicle model, there are two types of quick-connect fittings, each used at different locations in the fuel system. Each type of quick-connect fitting consists of a unique female connector and a compatible male fuel pipe end. O-rings, located inside the female connector, provide the fuel seal. Integral locking tabs or fingers hold the quick-connect fittings together.

Fuel Pipe O-Rings

Fuel feed and return pipe threaded connections at the fuel rail and fuel filter are sealed with replaceable O-ring seals. These O-rings seals are made of special material, and should only be serviced with the correct service part.

Fuel Tank Pressure Sensor


Object Number: 18839  Size: SH

(VIN K Only). The fuel tank pressure sensor is a three wire strain gauge sensor much like that of the common GM MAP sensor. However, this sensor has very different electrical characteristics due to its pressure differential design. The sensor measures the difference between the air pressure (or vacuum) in the fuel tank and the outside air pressure. The sensor mounts at the top of the fuel tank. A three wire electrical harness connects it to the Powertrain Control Module (PCM). The PCM supplies a five volt reference voltage and ground to the sensor. The sensor will return a voltage between 0.1 and 4.9 volts. When the air pressure in the fuel tank is equal to the outside air pressure, such as when the fuel fill cap is removed, the output voltage of the sensor will be 1.3 to 1.7 volts. Refer to Evaporative Emission Control System further information and diagnosis of the enhance EVAP system.

Enhanced Evaporative Emission (EVAP) Service Port


Object Number: 21046  Size: SH

(VIN K Only). The enhanced EVAP service port is located in the evaporative purge hose located between the purge solenoid and the canister. The service port is identified by a green colored cap. The port contains a schrader valve and fittings to allow connections of J 41413 evaporative pressure/purge diagnostic system. Refer to Evaporative Emission Control System for further information and doagnosis of the enhanced EVAP system.

Fuel Pump Speed Control Relay (VIN 1)


Object Number: 104560  Size: MF
(1)Fuel Pump Fuse
(2)Fuel Pump Relay
(3)Under Hood Electrical Center
(4)Powertrain Control Module (PCM)
(5)Fuel Pump Relay Control
(6)Fuel Pump Speed Control Relay Control
(7)Fuel Tank
(8)Fuel Pump
(9)Fuel Pump Resistor
(10)Fuel Pump Speed Control Relay

The L67 engine utilizes a two speed fuel pump speed control relay. When the ignition switch is first turned ON, the PCM energizes the fuel pump relay which applies power to the fuel pump through the fuel pump speed control relay. The fuel pump relay will remain ON as long as the engine is running or cranking and the PCM is receiving reference pulses. If no reference pulses are present, the PCM de-energizes the fuel pump relay within 2 seconds after the ignition is turned ON or the engine is stopped. The fuel pump delivers fuel to the fuel rail and injectors, then to the fuel pressure regulator. The fuel pressure regulator controls fuel pressure by allowing excess fuel to be returned to the fuel tank. With the engine stopped, the fuel pump can be turned ON by using the scan tool output controls function.

The PCM alters fuel pump speed by energizing the fuel pump speed control relay. Under most conditions, the fuel pump speed control relay is energized. The applied voltage to the fuel pump is controlled by a resistor assembly. When higher fuel volume is required due to increased engine load (MAP sensor value over 90 kPa), the PCM de-energizes the fuel pump speed control relay circuit. The increased voltage to the in tank fuel pump allows a higher volume of fuel to be delivered to the fuel rail. The PCM also compensates for low system voltage by de-energizing the fuel pump speed control relay circuit. Refer to Fuel Pump Electrical Circuit Diagnosis for further information and diagnosis.