GM Service Manual Online
For 1990-2009 cars only

Diagnostic Instructions

    • Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure.
    • Review Strategy Based Diagnosis for an overview of the diagnostic approach.
    •  Diagnostic Procedure Instructions provides an overview of each diagnostic category.

DTC Descriptors

DTC P0101: Mass Air Flow (MAF) Sensor Performance

DTC P1101: Intake Air Flow System Performance

Diagnostic Fault Information

Circuit

Short to Ground

High Resistance

Open

Short to Voltage

Signal Performance

Ignition 1 Voltage

P0102

P0101

P0102

--

P0101, P0103

MAF Sensor Signal

P0102

P0102

P0102

P0102

P0101, P0103, P1101

Ground

--

P0102

P0102

--

P0102

Typical Scan Tool Data

MAF Sensor

Circuit

Short to Ground

Open

Short to Voltage

Normal Range: Varies - 1,700-9,500 Hz

Ignition 1 Voltage

0 Hz

0 Hz

--

MAF Sensor Signal

0 Hz

0 Hz

0 Hz

Ground

--

0 Hz

--

Circuit Description

The intake flow rationality diagnostic provides the within-range rationality check for the mass air flow (MAF), the manifold absolute pressure (MAP), and the throttle position (TP) sensors. This is an explicit model-based diagnostic containing 4 separate models for the intake system.

    • The throttle model describes the flow through the throttle body, and is used to estimate the MAF through the throttle body as a function of barometric pressure (BARO), TP, intake air temperature (IAT), and estimated MAP. The information from this model is displayed on the scan tool as the MAF Performance Test parameter.
    • The first intake manifold model describes the intake manifold, and is used to estimate MAP as a function of the MAF into the manifold from the throttle body, and the MAF out of the manifold caused by engine pumping. The flow into the manifold from the throttle uses the MAF estimate calculated from the above throttle model. The information from this model is displayed on the scan tool as the MAP Performance Test 1 parameter.
    • The second intake manifold model is identical to the first intake manifold model except that the MAF sensor measurement is used instead of the throttle model estimate for the throttle air input. The information from this model is displayed on the scan tool as the MAP Performance Test 2 parameter.
    • The fourth model is created from the combination and additional calculations of the throttle model and the first intake manifold model. The information from this model is displayed on the scan tool as the TP Performance Test parameter.

The estimates of MAF and MAP obtained from this system of models and calculations are then compared to the actual measured values from the MAF, the MAP, and the TP sensors and to each other to determine the appropriate DTC to fail. The following table illustrates the possible failure combinations and the resulting DTC or DTCs.

IFRD Truth Reporting

MAF Performance Test

MAP Performance Test 1

MAP Performance Test 2

TP Performance Test

DTCs Passed

DTCs Failed

X

X

OK

OK

P0101, P0106, P0121, P1101

None

OK

OK

Fault

OK

P0101, P0106, P0121, P1101

None

Fault

OK

Fault

OK

P0106, P0121, P1101

P0101

OK

Fault

Fault

OK

P0101, P0121, P1101

P0106

Fault

Fault

Fault

OK

P0121, P1101

P0101, P0106

X

X

OK

Fault

P0101, P0106, P1101

P0121

OK

OK

Fault

Fault

P0101, P0106, P0121, P1101

None

Fault

OK

Fault

Fault

P0101, P0106, P0121

P1101

X

Fault

Fault

Fault

P0101, P0106, P0121

P1101

Conditions for Running the DTC

    • DTCs P0102, P0103, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0128, P0335, P0336, P0401, P0405, and P1404 are not set.
    • The engine speed is between 500-5,000 RPM.
    • The IAT Sensor parameter is between -7 and +60°C (+19 and +140°F).
    • The ECT Sensor parameter is between 70-129°C (158-264°F).
    • This DTC runs continuously within the enabling conditions.

Conditions for Setting the DTC

P0101

The engine control module (ECM) detects that the difference between the measured MAF and the MAP performance test 2 is greater than 25 g/s for greater than 0.5 second.

P1101

The engine control module (ECM) detects that the actual measured airflow from the MAF, the MAP, and the TP sensors is not within range of the calculated airflow that is derived from the system of models for more than 0.5 second.

Action Taken When the DTC Sets

DTCs P0101 and P1101 are Type B DTCs.

Conditions for Clearing the MIL/DTC

DTCs P0101 and P1101 are Type B DTCs.

Diagnostic Aids

    • A steady or intermittent high resistance of 25 ohms or more on the ignition 1 voltage circuit will cause the MAF sensor values to be skewed high by up to 30 g/s. Use the scan tool to compare the MAF Sensor parameter to a known good vehicle under various operating conditions.
    • A skewed MAP sensor will also cause the first and second intake manifold models to disagree with the actual MAP sensor measurements. Use the scan tool to compare the MAP Sensor parameter to a known good vehicle under various operating conditions.
    • A skewed or stuck engine coolant temperature (ECT) or IAT sensor will cause the calculated models to be inaccurate and may cause this DTC to run when it should not. Refer to Temperature Versus Resistance .

Reference Information

Schematic Reference

Engine Controls Schematics

Connector End View Reference

    •  Engine Controls Connector End Views
    •  Engine Control Module Connector End Views

Electrical Information Reference

    •  Circuit Testing
    •  Connector Repairs
    •  Testing for Intermittent Conditions and Poor Connections
    •  Wiring Repairs

DTC Type Reference

Powertrain Diagnostic Trouble Code (DTC) Type Definitions

Scan Tool Reference

    •  Scan Tool Data List
    •  Scan Tool Data Definitions
    •  Scan Tool Output Controls

Special Tools Required

J 38522 Variable Signal Generator

Circuit/System Verification

  1. Verify the integrity of the entire air induction system by inspecting for the following conditions:
  2. • Any damaged components
    • Loose or improper installation
    • An air flow restriction
    • An air flow leak
    • Any vacuum leak
    • In cold climates, inspect for any snow or ice buildup
    • Water intrusion
  3. Verify that restrictions do not exist in the exhaust system. Refer to Restricted Exhaust .
  4. Caution: Refer to Road Test Caution in the Preface section.

  5. Road test the vehicle and verify that the MAF sensor calculated g/s and the actual MAF g/s parameters are near or equal to each other.
  6. A skewed MAF sensor, intake air flow restriction or intake air flow leak after the MAF sensor may cause the calculated g/s and MAF g/s parameters to disagree. Road test the vehicle while observing both parameters under various engine loads.
  7. A wide open throttle (WOT) acceleration from a stop should cause the MAF sensor parameter on the scan tool to increase rapidly. This increase should be from 3-8 g/s at idle to 190 g/s or more at the time of the 1-2 shift.
  8. The BARO that is used by the ECM to calculate the air flow models is initially based on the MAP sensor at ignition ON. When the engine is running, the ECM will continually update the BARO value near WOT using the MAP sensor and a calculation. A skewed MAP sensor will cause the BARO value to be inaccurate. Use the scan tool to compare the BARO parameter at ignition ON to the Altitude vs. Barometric Pressure table. Determine the altitude for your area and refer to Altitude Versus Barometric Pressure .
  9. Engine running, observe the DTC information with a scan tool. DTCs P0101 or P1101 should not set.
  10. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records data.

Circuit/System Testing

  1. Ignition OFF, disconnect the harness connector at the MAF/IAT sensor.
  2. Ignition OFF, allow at least 60 seconds for the control module to power down.
  3. Test for less than 2 ohms of resistance between the MAF ground circuit terminal C and ground.
  4. If greater than the specified range, test the ground circuit for an open/high resistance.
  5. Ignition ON, verify a test lamp illuminates between the ignition circuit terminal B and ground.
  6. If the test lamp does not illuminate, test the ignition circuit for a short to ground or an open/high resistance.
  7. Ignition ON, test for 4.8-5.2 volts between the MAF signal circuit terminal A and ground.
  8. If less than the specified range, test the signal circuit for a short to round or an open/high resistance. If the circuit tests normal, replace the ECM.
    If greater than the specified range, test the signal circuit for a short to voltage. If the circuit tests normal, replace the ECM.
  9. Ignition OFF, connect the J 38522 to the vehicle. Refer to Component Testing for instructions.

Component Testing

To determine if the ECM can properly process the MAF sensor frequency signal, connect the J 38522 to the vehicle as follows:

  1. Ignition OFF, connect the battery voltage supply and ground the black lead.
  2. Connect the red lead to the signal circuit of the MAF sensor.
  3. Set the duty cycle switch to Normal.
  4. Set the Frequency switch to 5 K.
  5. Set the signal switch to 5 volts.
  6. Engine running, observe the MAF Sensor parameter for the correct range of 4,950-5,025 Hz.
  7. If the MAF Sensor parameter is not within the specified range, replace the ECM.
    If the MAF Sensor parameter is within the specified range, replace the MAF sensor.

Repair Instructions

Perform the Diagnostic Repair Verification after completing the diagnostic procedure.

    •  Mass Airflow Sensor/Intake Air Temperature Sensor Replacement
    •  Control Module References for ECM replacement, setup, and programming