GM Service Manual Online
For 1990-2009 cars only

HVAC Control Components

HVAC Control Module

The HVAC control module is a GMLAN device that interfaces between the operator and the HVAC system to maintain air temperature and distribution settings. The battery positive voltage circuit provides power that the control module uses for keep alive memory (KAM). The control module supports the following features:

Feature

Availability

Afterblow

Available if reprogrammed by the technician

Purge

Yes

Personalization

No

Actuator Calibration

No

Heated Seat Control

Optional

Remote Start

During remote start, full auto mode and the previous set temp will be commanded if ambient air temperature is above 0°C (32°F). Defrost mode will be commanded when the ambient air temperature is below 0°C (32°F) and inside temperature sensor is below 10°C (50°F). When the key is turned ON, the HVAC control module will return to last stored settings.

Temperature, Recirculation and Mode Actuators

The actuators are 5-wire bi-directional electric motors that incorporate a feedback potentiometer. Low reference, 5-volt reference, position signal, and 2 control circuits enable the actuator to operate. The control circuits use either a 0 or 12-volt value to co-ordinate the actuator movement. When the actuator is at rest, both control circuits have a value of 0 volts. In order to move the actuator, the HVAC control module grounds one of the control circuits while providing the other with 12 volts. The HVAC control module reverses the polarity of the control circuits to move the actuator in the opposite direction. When the actuator shaft rotates, the potentiometers adjustable contact changes the door position signal between 0-5 volts. The HVAC control module uses a range of 0-255 counts to index the actuator position. The door position signal voltage is converted to a 0-255 count range. When the module sets a commanded, or targeted, value, one of the control circuits is grounded. As the actuator shaft rotates the changing position signal is sent to the module. Once the position signal and the commanded value are the same, the module removes power and ground from the control circuits.

Air Temperature Sensors

The air temperature sensors are 2-wire negative temperature co-efficient thermistors. The vehicle uses the following air temperature sensors:

    • Ambient
    • Inside

A signal and low reference circuit enables the sensor to operate. As the air temperature surrounding the sensor increases, the sensor resistance decreases. The sensor signal decreases as the resistance decreases. The sensor signal varies between 0-5 volts. The HVAC control module converts the signal to a range between 0-255 counts.

The inside temperature sensor operates within a temperature range between -6.5°C and +57.5°C (20.3-135.5°F). If the sensor is shorted to ground, voltage, or an open, the system will operate using an estimated default value to allow the system to operate. The ambient sensor operates within a temperature range between -30 to +51°C (-22 to +123.8°F). If the HVAC control module has determined that the ambient temperature sensor has failed, the driver information center (DIC) display shall display 59°F in place of the outside air temperature. If the sensor is shorted to ground, voltage, or an open, the system will operate using an estimated default value to allow the system to operate. If the engine has not been started in 3 hours, then the actual ambient air temperature sensor reading is displayed. Also at vehicle speeds greater than 35 km/h (22 mph), the ambient air temperature displayed may be allowed to increase, but only at a slow, filtered rate. The driver information center (DIC) displays the ambient air temperature value that it receives from the HVAC control module through a GMLAN message. The ambient air temperature value can be updated by an outside air instant update feature.

To use this feature, press the following switches on the HVAC control module simultaneously:

    • LEFT TEMPERATURE UP
    • PASS
    • REAR DEFROST

Sunload Sensor

The sunload sensor is a 2-wire photo diode. The vehicle uses left and right sunload sensors. The 2 sensors are integrated into the sunload sensor assembly along with the ambient light sensor. Low reference and signal circuits enable the sensor to operate. As the sunload increases, the sensor signal decreases. The sensor operates within an intensity range between completely dark and bright. The sensor signal varies between 0-5 volts. The HVAC control module converts the signal to a range between 0-255 counts. The sunload sensor provides the HVAC control module a measurement of the amount of light shining on the vehicle. Bright, or high intensity, light causes the vehicles inside temperature to increase. The HVAC system compensates for the increased temperature by diverting additional cool air into the vehicle. If the sensor is open or shorted, no sunload adjustment occurs and the SERVICE A/C SYSTEM message is displayed.

Evaporator Temperature Sensor

The HVAC control module monitors the temperature of the air passing through the evaporator by the A/C evaporator air temperature sensor. This sensor is located on the evaporator core. The temperature is used to cycle the A/C compressor ON and OFF to prevent the evaporator core from freezing. A thermistor inside the sensor varies its resistance to monitor the evaporator air temperature. The HVAC control module monitors the voltage drop across the thermistor when supplied with a 5-volt reference signal. The HVAC control module will send a GMLAN message to the ECM to stop requesting the A/C compressor clutch operation if the temperature drops below 3°C (37°F). The sensor must be above 4°C (39°F) to request the A/C compressor clutch again.

The sensor operates within a temperature range between -40°C to 215°C (-40 to 355°F). If the HVAC control module detects an open in the evaporator temperature sensor or circuit, the GMLAN message sent to the ECM will not submit the A/C ON request. The HVAC control module will then send a request to the Radio for display of the SERVICE A/C SYSTEM that will be displayed on the DIC. The HVAC control module will also display A/C OFF on the module as long as the condition is present.

A/C Refrigerant Pressure Sensor

The A/C refrigerant pressure sensor is a 3-wire piezoelectric pressure transducer read by the engine control module (ECM). A 5-volt reference, low reference, and signal circuits enable the sensor to operate. The A/C pressure signal can be between 0-5 volts. When the A/C refrigerant pressure is low, the signal value is near 0 volts. When the A/C refrigerant pressure is high, the signal value is near 5 volts.

The A/C refrigerant pressure sensor prevents the A/C system from operating when an excessively high or low pressure condition exists.

If the ECM detects a failure in the A/C refrigerant pressure sensor or circuit, the GMLAN message sent to the HVAC control module will be invalid. The HVAC control module will then send a request to the radio for display of the SERVICE A/C SYSTEM that will be displayed on the DIC. The HVAC control module will also display A/C OFF on the module as long as the condition is present.

Air Quality Sensor (RPO K14)

The air quality sensor recognizes carbon monoxide but is not designed as a safety feature to protect you from carbon monoxide. The air quality sensor is designed to limit your exposure to gasoline exhaust fumes and or diesel exhaust fumes that could enter into the passenger compartment from nearby vehicles for a limited amount of time.

The HVAC control module monitors the outside air quality while in AUTO mode via the air quality sensor assembly. You can activate the air quality sensor on your vehicle, if equipped, by pressing the Auto button on the HVAC module. The air quality sensor is a 5-wire sensor, 1 ignition voltage circuit, 2 ground circuit, and 2 control circuits. There are 2 sensors inside the air quality sensor assembly. A hydro carbon (HC) sensor that is used for detecting gasoline exhaust fumes and a Nox sensor that is used for detecting nitrous oxide, diesel exhaust fumes. The HVAC control module outputs a 5-volt signal on the HC and Nox control circuits and operates in a range between 0-5 volts.

The HVAC module updates the air quality sensor calibration approximately 4 times per second. The air quality sensor input to the HVAC module is compared to the previously updated air quality sensor calibration. If the voltage difference is great enough the recirc actuator will be controlled to recirc, outside air, or partial recirc outside air position based on the air quality sensor input.

When air quality around the front of the vehicle is poor, the air quality sensor system operates as follows:

    • Poor air quality with high HC levels will cause the HC control circuit to read a lower voltage.
    • Poor air quality with high Nox levels will cause the Nox control circuit to read a higher voltage.
    • The recirculation actuator is forced to the recirculation position.
    • The recirc symbol on the HVAC module will illuminate.
    • The recirc icon will not illuminate if the recirc actuator is already in the auto recirc position.

When air quality around the front of the vehicle is normal, the air quality sensor system operates as follows:

    • Normal air quality levels the HC control circuit will recognize very little voltage change from the previously updated calibration.
    • Normal air quality levels the Nox control circuit will recognize very little voltage change from the previously updated calibration.
    • The recirculation actuator position is not controlled by the air quality sensor system.

The following are conditions that will prevent the air quality sensor from controlling the recirc actuator:

    • A/C OFF conditions (compressor OFF) prevents air quality sensor from changing the current position of the actuator)
    • Coolant temperature below 37°C (99°F) during warm up will prevent the blower from operating and air quality sensor from controlling the recirc position.
    • Outside air temperature less than 5°C (41°F) (prevents air quality sensor from changing the current position of the actuator)
    • Outside air temperature less than 15°C (59°F) and A/C high side pressure less than 196 kPa (28 psi) (prevents air quality sensor from changing the current position of the actuator)
    • 28 seconds sensor warm-up time after ignition is turned ON (prevents air quality sensor from changing the current position of the actuator)
    • Evaporator temperature sensor failure
    • Customer manually selects defrost or defog (forces actuator to outside air position)
    • Customer manually selects recirc or outside air position
    • Coolant temperature above 112°C (V8), 119°C (HFV6) the actuator is forced to the recirc position. When coolant temperature drops below 109°C (V8), 116°C (HFV6) forced recirc is canceled.
    • A/C pressure above 2 500 kpa (362 psi) the actuator is forces to the recirc position. When A/C pressure drops below 2 000 kpa (290 psi) forced recirc is canceled.

The following describes the recirc actuator function after the air quality sensor has canceled the command to recirc

    • Full recirc position will be held for 2 minutes when vehicle speed is less than 10 km/h (6.3 mph) after 2 minutes expires the recirc door will move to full outside air position.
    • Partial recirc, outside air position will be held for 2 minutes when vehicle speed is above 20 km/h (12.5 mph) after 2 minutes expires the recirc door will move to full outside air position.
    • Full outside air position if vehicle speed is greater than 60 km/h (37 mph) and blower is not on high speed.

The Air Quality system will have three Sensitivity levels, Low, Medium, and High. Medium is the default setting in new vehicles.

The Sensitivity Level can be changed through SPS programming. If exhaust fumes are noticed in the vehicle a more sensitive level should be selected.

The driver information center (DIC) will display the SERVICE A/C SYSTEM message if the HVAC system has detected a short to ground in the air quality sensor circuit. An open circuit or a short to voltage in the air quality sensor circuit will be diagnosed through symptom based diagnostics because both of these conditions will not turn on the SERVICE A/C SYSTEM message or set a trouble code.

Air Speed

The blower motor forces air to circulate within the vehicles interior. The vehicle operator determines the blower motors speed by placing the blower motor switch in a desired speed position or by selecting automatic operation. In manual operation, once a blower speed is selected, the blower speed remains constant until a new speed is selected. In automatic operation, the HVAC control module will determine what blower speed is necessary in order to achieve or maintain a desired temperature. When the HVAC control module blower switch is set to the maximum manual speed position and the Mode Switch is set to PANEL or AUTO, the Blower Motor operates at 79.71 percent of the blower motor maximum output. This is normal operation. When the HVAC control module blower switch is set to the maximum manual speed position and the Mode Switch is set to a position other than PANEL or AUTO, the Blower Motor operates at 100 percent of the blower motor maximum output. If an OnStar call is initiated while the blower is in high speed during automatic operation, the blower speed will be lowered to reduce background noise.

OnStar® Blower Control ON/OFF

During OnStar® audio control ON, the HVAC control module receives signals from OnStar® to reduce blower level to a level 4. OnStar® blower control becomes active in auto or manual blower operation. During this OnStar® blower control, if in manual or auto blower, the display will show AUTO for blower display. This blower reduction is to ensure that all incoming and outgoing voice calls will be recognized by the OnStar® module. The driver is allowed to override the OnStar® auto blower level by increasing or decreasing it manually to any desired level. When OnStar® no longer sends the request for blower control the HVAC control module will cancel OnStar® blower control and resume previous blower level if no manual override of the blower was selected.

Blower Motor Control Processor

The blower motor control processor is an interface between the HVAC control module and the blower motor. The blower motor speed control, blower motor supply voltage and ground circuits enable the control processor to operate. The HVAC control module provides a PWM signal to the control processor in order to command the blower motor speed. The control processor uses the blower motor ground as a low side control to adjust the blower motor speed.

Afterblow

Afterblow is a feature that dries the evaporator core by operating the blower motor after the engine is turned off. This reduces the amount of microbial growth that can create undesirable odors. The vehicle does not come equipped with the afterblow feature turned on. If the afterblow feature is required due to an odor concern, it must be turned on by reprogramming the HVAC control module, refer to Service Programming System (SPS) .

After the HVAC control module has been programmed for afterblow, the following conditions must be met for afterblow to operate:

    • The engine has been turned off for at least 30 minutes.
    • The ambient air temperature is at least 21°C (70°F).
    • The A/C compressor operated for more than 2 minutes before shut down.
    • The system voltage is at least 12 volts.

Once the above conditions have been met, the following sequence of events will occur:

  1. The blower motor will RUN for 20 seconds.
  2. The blower motor will be OFF for 10 minutes.
  3. The blower motor will RUN for and additional 20 seconds.

Auxiliary Air Speed

Auxiliary A/C has a blower motor that is independent to that system. Voltage is supplied to the auxiliary blower motor from the rear fuse block. The auxiliary blower motor switch applies ground to the auxiliary blower motor control circuit that corresponds to the selected blower speed. The resistors and the blower motor are in a series circuit. The following list represents the number of resistors in series with the auxiliary blower motor per particular speed request:

    • Low speed-3 resistors
    • Medium 1 speed-2 resistors
    • Medium 2 speed-1 resistor

When the operator requests High speed, ground is applied directly to the auxiliary blower motor.

Heating and A/C Operation

The purpose of the heating and A/C system is to provide the following:

    • Heated air
    • Cooled air
    • Remove humidity from the interior of the vehicle
    • Reduce windshield fogging

Regardless of the temperature setting, the following can effect the rate that the HVAC system can achieve a desired temperature:

    • Recirculation actuator setting
    • Difference between inside and desired temperature
    • Difference between ambient and desired temperature
    • Blower motor speed setting
    • Mode setting

The HVAC control module commands or monitors the following actions when an air temperature setting is selected:

    • WARMEST POSITION--The air temperature actuator door position directs maximum air flow through the heater core.
    • COLDEST POSITION--The air temperature actuator door position directs maximum air flow around the heater core.

BETWEEN THE WARMEST AND COLDEST POSITION--The following sensors are monitored to direct the appropriate amount of air through the heater core to achieve the desired temperature:

    • Sunload
    • Ambient temperature
    • Inside temperature

The A/C system is engaged by selecting any switch on the HVAC control module except the A/C OFF switch. The A/C switch will illuminate A/C OFF when the A/C switch is selected. The control module sends a GMLAN A/C request message to the engine control module (ECM) for A/C compressor clutch operation. The following conditions must be met in order for the ECM to turn on the compressor clutch:

    • HVAC control module
       - Evaporator Temperature more than 4°C (39°F)
       - Control module operating range 9 and 16 volts
    • ECM
       - Engine coolant temperature (ECT) is less than 125°C (257°F) or 120°C (248°F) for PV8
       - Engine RPM is between 0 RPM and 6000 RPM
       - A/C pressure is between 3137 kPa (455 psi) or 2850 kPa (413 psi) for PV8 and 193 kPa (28 psi) or 200 kPa (29 psi) for PV8.

Once engaged, the compressor clutch will be disengaged for the following conditions:

    • Throttle position is 100 percent.
    • A/C pressure is more than 3137 kPa (455 psi) or 2850 kPa (413 psi) for PV8.
    • A/C pressure is less than 193 kPa (28 psi) or 200 kPa (29 psi) for PV8.
    • Engine coolant temperature (ECT) is more than 125°C (257°F) or 120°C (248°F) for PV8.
    • Engine speed is more than 5,500 RPM.
    • Transmission shift
    • ECM detects excessive torque load.
    • ECM detects insufficient idle quality.
    • ECM detects a hard launch condition.

When the compressor clutch disengages, the compressor clutch diode protects the electrical system from a voltage spike.

Dual Zone Operation

The HVAC control module has temperature settings for the driver and the passenger. If the passengers setting is turned off then the drivers setting controls both driver and passenger temperature actuators. The passengers setting can not be used without the drivers setting also being ON. The passengers setting can be turned ON or OFF by pressing the passengers temperature switch. When the passengers setting is ON, the passenger temperature can be adjusted independently from the drivers setting and the passenger temperature is displayed on the passengers side of the control module. A different sunload on one side of the vehicle may cause different discharge air temperatures even when the passengers setting is not turned ON.

Air Distribution

The HVAC control module controls the mode actuator in order to distribute airflow to a desired outlet. The mode switch provides the vehicle operator with the ability to override the automatic setting. When the mode door is moved to the defrost position, the A/C compressor clutch engages and the recirculation actuator will be moved to the outside air position. In the outside air position, the incoming air is filtered by the passenger compartment air filter.

The HVAC system allows air to the outboard panel outlets in all air distribution modes. This allows air to be circulated higher in the cabin under any operating condition. The panel outlets have three operating positions, open, side window defogger and closed. To eliminate air from these outlets, the individual outlet thumb wheel must be turned to the OFF or side window defogger position.

Recirculation

The HVAC control module controls the air intake through the recirculation actuator. Recirculation is not available when the mode is in defrost. When the mode is in defog, Recirculation will only be available for 10 minutes. In the outside air position, the incoming air is filtered by the passenger compartment air filter.

Automatic Operation

In automatic operation, the HVAC control module will maintain the comfort level inside of the vehicle by controlling the A/C compressor clutch, the blower motor, the air temperature actuators, mode actuator and recirculation.

To place the HVAC system in automatic mode, the following is required:

    • The blower motor switch must be in the AUTO position.
    • The air temperature switch must be in any other position other than 60 or 90 degrees.
    • The mode switch must be in the AUTO position.

Once the desired temperature is reached, the blower motor, mode, recirculation and temperature actuators will automatically adjust to maintain the temperature selected. The HVAC control module performs the following functions to maintain the desired air temperature:

    • Regulate blower motor speed
    • Position the air temperature actuator
    • Position the mode actuator
    • Position the recirculation actuator
    • Request A/C operation

When the warmest position is selected in automatic operation the blower speed will increase gradually until the vehicle reaches normal operating temperature. When normal operating temperature is reached the blower will stay on high speed and the air temperature actuators will stay in the full heat position.

When the coldest position is selected in automatic operation the blower will stay on high and the air temperature actuators will stay in the full cold position. The mode actuator will remain in the panel position and the recirculation actuator will remain in the recirculation position.

In cold temperatures, the automatic HVAC system will provide heat in the most efficient manner. The vehicle operator can select an extreme temperature setting but the system will not warm the vehicle any faster. In warm temperatures, the automatic HVAC system will also provide air conditioning in the most efficient manner. Selecting an extreme cool temperature will not cool the vehicle any faster.