The electronic throttle control (ETC) system uses various inputs from the powertrain control module (PCM). This system uses the inputs in order to control the idle speed through serial data circuits to the throttle actuator control (TAC) module. The DC motor, which is located on the throttle body, activates the throttle plate. In order to decrease idle speed, the TAC module commands the throttle closed reducing air flow into the engine and the idle speed decreases. In order to increase the idle speed, the TAC module commands the throttle plate open allowing more air in order to bypass the throttle plate. If the actual idle RPM does not match the desired idle RPM within a calibrated time, this DTC will set.
• | DTCs P0101-P0103, P0107, P0108, P0112, P0113, P0117, P0118, P0125, P0171, P0172, P0174, P0175, P0200, P0300, P0440, P0442, P0443, P0500, P0502, P0503, P1120, P1220, P1221, or P1441 are not set. |
• | The engine is running for greater than 60 seconds. |
• | The engine coolant temperature (ECT) is greater than 60°C (140°F). |
• | The intake air temperature (IAT) is greater than -10°C (+14°F). |
• | The barometric pressure (BARO) is greater than 65 kPa. |
• | The system voltage is between 9-18 volts. |
• | The vehicle speed is less than 1.7 km/h (1 mph). |
• | The accelerator pedal position (APP) sensor is at 0 percent. |
• | The actual idle speed is 100 RPM less than the desired idle speed. |
• | All of the above conditions are present for 5 seconds. |
• | The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
The number below refers to the step number on the diagnostic table.
Step | Action | Yes | No | ||||||
---|---|---|---|---|---|---|---|---|---|
Schematic Reference: Engine Controls Schematics Connector End View Reference: Engine Controls Component Views or Powertrain Control Module Connector End Views | |||||||||
1 | Did you perform the Diagnostic System Check-Engine Controls? | Go to Step 2 | |||||||
Did the engine speed stay within 100 RPM of the commanded RPM during the above test? | Go to Step 3 | Go to Step 4 | |||||||
3 |
Does the DTC set? | Go to Step 4 | Go to Intermittent Conditions | ||||||
4 | Inspect for the following conditions:
Did you complete the repair? | Go to Step 5 | -- | ||||||
5 |
Does the DTC run and pass? | Go to Step 6 | Go to Step 2 | ||||||
6 | With a scan tool review the stored information in Capture Info. Does the scan tool display any DTCs that you have not diagnosed? | System OK |
The engine idle speed is controlled by the idle air control (IAC) valve. The IAC valve is on the throttle body. The IAC valve pintle moves in and out of an idle air passage bore to control air flow around the throttle plate. The valve consists of a movable pintle, driven by a gear attached to a two phase bi-polar permanent magnet electric motor called a stepper motor. The stepper motor is capable of highly accurate rotation, or of movement, called steps. The stepper motor has two separate windings that are called coils. Each coil is fed by two circuits from the powertrain control module (PCM). When the PCM changes polarity of a coil, the stepper motor moves one step. The PCM uses a predetermined number of counts to determine the IAC pintle position. Observe IAC counts with a scan tool. The IAC counts will increment up or down as the PCM attempts to change the IAC valve pintle position. An IAC Reset will occur when the ignition key is turned OFF. First, the PCM will seat the IAC pintle in the idle air passage bore. Second, the PCM will retract the pintle a predetermined number of counts to allow for efficient engine start-up. If the engine idle speed is out of range for a calibrated period of time, an idle speed diagnostic trouble code (DTC) may set.
• | DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0125, P0128, P0171, P0172, P0174, P0175, P0200, P0300, P0440, P0442, P0443, P0446, P0449, P1111, P1112, P1114, P1115, P1121, P1122, P1380, P1381, and P1441 are not set. |
• | The engine run time is more than 60 seconds. |
• | The engine coolant temperature (ECT) sensor is between 60-116°C (140-241°F). |
• | The intake air temperature (IAT) sensor is more than -10°C (+14°F). |
• | The throttle position (TP) sensor is less than 0.7 percent. |
• | The barometric pressure (BARO) sensor is more than 65 kPa. |
• | The vehicle speed sensor (VSS) is less than 1.6 km/h (1 mph). |
• | The ignition voltage is between 9-18 volts. |
• | The above conditions are met for 2 seconds. |
The actual engine speed is 100 RPM less than the desired engine speed for more than 8 seconds.
• | The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
Inspect for the following conditions:
• | High resistance in an IAC circuit |
• | Restricted air intake system |
• | Proper operation and installation of all air intake components |
• | Collapsed, clogged, or loose air intake ducts |
• | A clogged air filter |
• | Proper operation of the mass air flow (MAF) sensor, if equipped |
• | A tampered with or damaged throttle stop screw |
• | A tampered with or damaged throttle plate, throttle shaft, or throttle linkage |
• | Objects blocking the IAC passage or throttle bore |
• | Excessive deposits in the IAC passage or on the IAC pintle |
• | Excessive deposits in the throttle bore or on the throttle plate |
• | Vacuum leaks |
• | A low or unstable idle condition could be caused by a non-IAC system problem that can not be overcome by the IAC valve--Refer to Symptoms - Engine Controls . |
If the problem is determined to be intermittent, refer to Intermittent Conditions .
The numbers below refer to the step numbers on the diagnostic table.
This test will determine the ability of the engine controller and IAC valve circuits to control the IAC valve.
This test will determine the ability of the PCM to provide the IAC circuits with a ground. On a normal operating system, the test lamp should not flash while the IAC counts are incrementing.
Step | Action | Yes | No | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Schematic Reference: Engine Controls Schematics | |||||||||||||||||
1 | Did you perform the Diagnostic System Check-Engine Controls? | Go to Step 2 | |||||||||||||||
2 |
Important: Ensure engine speed stabilizes with each commanded RPM change to determine if engine speed stays within 100 RPM of the commanded RPM.
Does the engine speed stabilize within 100 RPM of the commanded RPM during the above test? | Go to Step 3 | Go to Step 4 | ||||||||||||||
3 |
Does the DTC fail this ignition? | Go to Step 4 | Go to Diagnostic Aids | ||||||||||||||
4 |
Did the engine speed steadily decrease to near 600 RPM and steadily increase to near 1,700 RPM when the IAC valve was commanded in and out? | Go to Step 5 | Go to Step 11 | ||||||||||||||
Did the test lamp remain ON, never flashing, while the IAC counts where incrementing at any of the IAC valve circuits during the above test? | Go to Step 10 | Go to Step 6 | |||||||||||||||
6 | Did the test lamp remain OFF, never flashing, while the IAC counts where incrementing at any of the IAC valve circuits during the above test? | Go to Step 9 | Go to Step 7 | ||||||||||||||
Did the test lamp stay illuminated and never flashing while the IAC counts where incrementing during the above test? | Go to Step 8 | Go to Step 16 | |||||||||||||||
8 | Inspect for a poor connection at the IAC valve harness connector. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 17 | Go to Diagnostic Aids | ||||||||||||||
9 |
Did you find and correct the condition? | Go to Step 17 | Go to Step 12 | ||||||||||||||
10 |
Did you find and correct the condition? | Go to Step 17 | Go to Step 12 | ||||||||||||||
11 |
Did you find and correct the condition? | Go to Step 17 | Go to Step 14 | ||||||||||||||
12 | Inspect for a poor connection at the PCM harness connectors. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 17 | Go to Step 13 | ||||||||||||||
13 |
Did you find and correct the condition? | Go to Step 17 | Go to Step 16 | ||||||||||||||
14 | Inspect for a poor connection at the IAC valve harness connector. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 17 | Go to Step 15 | ||||||||||||||
15 | Replace the IAC valve. Refer to o Idle Air Control Valve Replacement . Did you complete the replacement? | Go to Step 17 | -- | ||||||||||||||
16 | Replace the PCM. Refer to Powertrain Control Module Replacement . Did you complete the replacement? | Go to Step 17 | -- | ||||||||||||||
17 |
Does the DTC run and pass? | Go to Step 18 | Go to Step 2 | ||||||||||||||
18 | With a scan tool observe the stored information in Capture Info. Does the scan tool display any DTCs that you have not diagnosed? | System OK |