GM Service Manual Online
For 1990-2009 cars only

DTC P1134 or P1154 4.8L or 5.3L w/Case Grounded HO2S

Circuit Description

This diagnostic applies only to vehicles built with case grounded heated oxygen sensors (HO2S). To identify the HO2S, refer to Engine Controls Component Views .

The powertrain control module (PCM) monitors the HO2S activity. During the monitor period the PCM counts the number of times that the HO2S responds from rich to lean and from lean to rich and adds the amount of time needed to complete all transitions. With this information, an average time for all transitions can be determined. The PCM then divides the rich to lean average by the lean to rich average to obtain a ratio. A DTC sets if the HO2S ratio is not within range.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0131, P0132, P0134, P0135, P0151, P0152, P0154, P0155, P0200, P0300, P0401, P0404, P0405, P0440, P0442, P0446, P0452, P0453, P1120, P1125, P1220, P1221, P1258, P1404, P1441, P1514, P1515, P1516, P1517, or P1518 are not set.
    • The engine coolant temperature (ECT) is more than 65°C (149°F).
    • The engine run time is more than 160 seconds.
    • The evaporative emission (EVAP) purge solenoid command is more than 1 percent.
    • The mass air flow (MAF) is between 23-50 g/s.
    • The engine speed is between 1,200-3,000 RPM.
    • For vehicles without throttle-actuated control (TAC), the throttle position (TP) is more than 5 percent.
    • For vehicles with TAC, the TP indicated angle is 5 percent more than the value observed at idle.
    • The vehicle is operating in Closed Loop.
    • The ignition 1 signal is between 9-18 volts.
    • The fuel tank level remaining is more than 10 percent.
    • The fuel alcohol content is less than 90 percent.
    • Intrusive tests are not in progress.
    • The scan tool output controls are not active.
    • The above conditions are met for 100 seconds.

Conditions for Setting the DTC

The HO2S transition time ratio is not within a calibrated range.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Diagnostic Aids

Important: Remove any debris from the PCM connector surfaces before servicing the PCM. Inspect the PCM connector gaskets when diagnosing/replacing the PCM. Ensure that the gaskets are installed correctly. The gaskets prevent water intrusion into the PCM.

    • Using the Freeze Frame/Failure Records data may aid in locating an intermittent condition. If the DTC cannot be duplicated, the information included in the Freeze Frame/Failure Records data can be useful in determining how many miles since the DTC set. The Fail Counter and Pass Counter can also be used to determine how many ignition cycles the diagnostic reported a pass and/or a fail. In order to isolate when the DTC failed, operate vehicle within the same Freeze Frame conditions that you observed:
    • An oxygen supply inside the HO2S is necessary for proper operation. This supply of oxygen is provided through the HO2S wires. All HO2S wires and connections should be inspected for breaks or contamination. Refer to Heated Oxygen Sensor Wiring Repairs in Wiring Systems.

For an intermittent, refer to Intermittent Conditions .

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. This step determines if the fault is present. This test may take 5 minutes for the diagnostic to run. For any test that requires probing the PCM or a component harness connector, use the J 35616-A Connector Test Adapter Kit . Using this kit prevents damage to the harness connector terminals.

  2. When DTCs P1134 and P1154 are set at the same time, this is a good indication that a fuel contamination condition is present.

  3. An exhaust leak 15.2-30.5 cm (6-12 inches) away from the HO2S can cause a DTC to set.

  4. This step tests the HO2S for being tight and the connectors and circuits are OK.

  5. This step tests the integrity of the HO2S low signal circuit to the PCM.

  6. This step tests the integrity of the signal circuits to the PCM.

Step

Action

Values

Yes

No

Important: This diagnostic applies only to vehicles built with case grounded HO2S. To identify the HO2S, refer to Engine Controls Component Views .

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: If any DTCs are set, except DTC P1134 or P1154, refer to those DTCs before proceeding with this diagnostic table.

  1. Install a scan tool.
  2. Idle the engine at the normal operating temperature.
  3. Operate the vehicle within the parameters specified under the Conditions for Running the DTC in the supporting text.
  4. Monitor the DTC information option using the scan tool.

Did DTC P1134 or P1154 fail this ignition?

--

Go to Step 3

Go to Diagnostic Aids

3

Did both DTC P1134 and P1154 fail this ignition?

--

Go to Step 8

Go to Step 4

4

  1. Inspect for an exhaust system leak. Refer to Exhaust Leakage in Engine Exhaust. After you inspect the exhaust system, return to this diagnostic.
  2. If you find an exhaust leak, repair the exhaust leak as necessary.

Did you find and correct the condition?

--

Go to Step 14

Go to Step 5

5

Visually and physically inspect the following items:

    • Verify that the HO2S is securely installed.
    • Inspect for corrosion on the terminals.
    • Inspect the terminal tension at the HO2S and at the PCM.
    • Inspect for damaged wiring.

Did you find and correct the condition?

--

Go to Step 14

Go to Step 6

6

  1. Disconnect the HO2S.
  2. Jumper the HO2S low signal circuit, PCM side, to a known good ground.
  3. Monitor the HO2S voltage on the Engine 1 Data List using the scan tool.

Does the scan tool indicate a voltage within the specified range?

350-550 mV

Go to Step 7

Go to Step 10

7

  1. Jumper the HO2S high and low, PCM side, signal circuits to a battery ground.
  2. Monitor the HO2S voltage using the scan tool.

Does the scan tool indicate a voltage below the specified value?

200 mV

Go to Step 13

Go to Step 9

8

Important: Determine and correct the cause of the HO2S contamination before replacing a sensor. Inspect for the following conditions:

   • Fuel contamination
   • Use of improper RTV sealant
   • Engine oil consumption
   • Coolant consumption

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 or Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 .

Did you complete the replacement?

--

Go to Step 14

--

9

  1. Remove the jumper wire from the HO2S low signal circuit.
  2. Measure the voltage from the HO2S low signal circuit to a battery ground using the DMM. Refer to Measuring Voltage in Wiring Systems.

Does the DMM indicate a voltage above the specified value?

4 V

Go to Step 12

Go to Step 11

10

Repair the high signal circuit for a short to ground or a short to voltage. Refer to Wiring Repairs in Wiring Systems.

Did you complete the replacement?

--

Go to Step 14

--

11

Repair the open HO2S low system circuits, or repair the faulty PCM connections. Refer to Wiring Repairs in Wiring Systems.

Did you complete the replacement?

--

Go to Step 14

--

12

Repair the HO2S high signal circuit for an open, or repair the faulty PCM connections. Refer to Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 14

--

13

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 or Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 .

Did you complete the replacement?

--

Go to Step 14

--

14

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 15

Go to Step 2

15

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK

DTC P1134 or P1154 6.0L w/Isolated Grounded HO2S

Circuit Description

This diagnostic applies only to vehicles built with isolated grounded heated oxygen sensors (HO2S). To identify the HO2S, refer to Engine Controls Component Views .

The powertrain control module (PCM) monitors the HO2S activity. During the monitor period the PCM counts the number of times that the HO2S responds from rich to lean and from lean to rich and adds the amount of time needed to complete all transitions. With this information, an average time for all transitions can be determined. The PCM then divides the rich to lean average by the lean to rich average to obtain a ratio. A DTC sets if the HO2S ratio is not within range.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0131, P0132, P0134, P0135, P0151, P0152, P0154, P0155, P0200, P0300, P0401, P0404, P0405, P0440, P0442, P0446, P0452, P0453, P1120, P1125, P1220, P1221, P1258, P1404, P1441, P1514, P1515, P1516, P1517, or P1518 are not set.
    • The engine coolant temperature (ECT) is more than 65°C (149°F).
    • The engine run time is more than 160 seconds.
    • The evaporative emission (EVAP) purge solenoid command is more than 1 percent.
    • The mass air flow (MAF) is between 23-50 g/s.
    • The engine speed is between 1,200-3,000 RPM.
    • For vehicles without throttle-actuated control (TAC), the throttle position (TP) is more than 5 percent.
    • For vehicles with TAC, the TP indicated angle is 5 percent more than the value observed at idle.
    • The vehicle is operating in Closed Loop.
    • The ignition 1 signal is between 9-18 volts.
    • The fuel tank level remaining is more than 10 percent.
    • Intrusive tests are not in progress.
    • The scan tool output controls are not active.
    • The above conditions are met for 100 seconds.

Conditions for Setting the DTC

The HO2S transition time ratio is not within a calibrated range.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Diagnostic Aids

Important: Never solder the HO2S wires. For proper wire and connector repairs, refer to Wiring Repairs or Connector Repairs in Wiring Systems.

Inspect for the following conditions:

    • An improperly installed air cleaner outlet duct
    • The air cleaner outlet duct for a collapsed duct, restrictions, or a missing or plugged air filter
    • Throttle body and intake manifold vacuum leaks
    • A damaged or blocked throttle body inlet
    • Exhaust system for corrosion, leaks, or loose or missing hardware. Refer to Exhaust Leakage in Engine Exhaust
    • The HO2S is installed securely and the pigtail harness is not contacting the exhaust manifold or wires
    • HO2S contamination
    • The vacuum hoses for splits, kinks, and proper connections
    • Excessive water, alcohol, or other contaminants in the fuel. Refer to Alcohol/Contaminants-in-Fuel Diagnosis
    • PCM sensor grounds that are clean, tight, and properly positioned

An intermittent may be caused by any of the following conditions:

    • A poor connection
    • Rubbed through wire insulation
    • A broken wire inside the insulation

Thoroughly inspect any circuitry that is suspected of causing the intermittent complaint. Refer to Testing for Intermittent Conditions and Poor Connections in Wiring Systems.

If a repair is necessary, refer to Wiring Repairs or Connector Repairs in Wiring Systems.

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. After the HO2S heater is commanded ON, the HO2S heater heats up causing the HO2S signal voltage to either increase or decrease. This indicates that the HO2S heater is OK.

  2. If the HO2S voltage is varying outside the specified range, the condition is not present.

  3. If the test lamp illuminates, the low reference circuit between the HO2S and PCM terminal C1-63 is OK and the PCM low reference terminal is OK.

  4. If the voltage is below the specified value, the high signal circuit, the low reference circuit, and the PCM are OK.

  5. The opposite bank HO2S must be disconnected to isolate a short to ground in the HO2S heater high control circuit.

  6. Resistance within the specified range indicates the HO2S heater is OK.

Step

Action

Values

Yes

No

Important: This diagnostic applies only to vehicles built with isolated grounded HO2S. To identify the HO2S, refer to Engine Controls Component Views .

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: Allow the engine to cool for one-half hour before proceeding with this diagnostic. This allows the HO2S signal voltage to return to bias voltage, approximately 447 mV.

  1. Install a scan tool.
  2. Turn ON the ignition, with the engine OFF.
  3. Command the HO2S heater ON with a scan tool.
  4. Immediately observe the affected HO2S voltage for 2 minutes.

Does the HO2S voltage go from bias voltage to more than or less than the specified range?

300-600 mV

Go to Step 3

Go to Step 5

3

  1. Start the engine.
  2. Allow the engine to reach operating temperature.
  3. Raise and hold the engine speed at 1,200 RPM for 2 minutes.
  4. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage varying outside the specified range?

350-550 mV

Go to Step 4

Go to Step 5

4

  1. Observe the Freeze Frame/Failure Records data for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text, or as close to the Freeze Frame/Failure Records data that you observed.

Does the DTC fail this ignition?

--

Go to Step 5

Go to Diagnostic Aids

5

Are Both DTCs P1134 and P1154 set?

--

Go to Step 6

Go to Step 7

6

  1. Turn OFF the ignition.
  2. Disconnect the HO2S bank 1 sensor 1 connector.
  3. Probe the HO2S low reference circuit with a test lamp that is connected to battery positive.

Does the test lamp illuminate?

--

Go to Step 11

Go to Step 10

7

  1. Turn OFF the ignition.
  2. Disconnect the affected HO2S connector.
  3. Jumper the HO2S high signal circuit to the low reference circuit.
  4. Turn the ignition ON, with the engine OFF.
  5. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage less than the specified value?

200 mV

Go to Step 11

Go to Step 8

8

  1. Turn OFF the ignition.
  2. Disconnect the PCM connector containing the HO2S high signal circuit. Refer to Powertrain Control Module Replacement .
  3. Test the HO2S high signal circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 9

9

Test for an open between terminal A of the affected sensor harness connector and one of the following PCM terminals:

    • If DTC P1134 is set use C1-29
    • If DTC P1154 is set use C1-26

Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 18

10

  1. Disconnect the PCM connector containing the HO2S low reference circuit. Refer to Powertrain Control Module Replacement .
  2. Test the low reference circuit for an open between HO2S bank 1 sensor 1 terminal A and PCM terminal C1-63.
  3. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 18

11

  1. If applicable, remove the jumper from the previous step.
  2. Disconnect the opposite bank HO2S connector.
  3. Perform the following:
  4. • If only one DTC is set, P1134 or P1154, probe the affected HO2S heater high control circuit with a test lamp that is connected to a good ground.
    • If both DTC P1134 and P1154 are set, probe HO2S bank 1 sensor 1 heater high control circuit with a test lamp that is connected to a good ground.
  5. Command the HO2S heater ON with a scan tool.

Does the test lamp illuminate?

--

Go to Step 12

Go to Step 13

12

  1. Connect a test lamp between the affected HO2S heater high control circuit and the HO2S heater low reference circuit.
  2. Command the HO2S heater ON with a scan tool.

Does the test lamp illuminate?

--

Go to Step 14

Go to Step 16

13

  1. Disconnect the PCM connector containing the HO2S heater high control circuit. Refer to Powertrain Control Module Replacement .
  2. Test the HO2S heater high control circuit for an open or short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 18

14

Important: Perform the following test on HO2S bank 1 sensor 1 and HO2S bank 2 sensor 1. A condition in either sensor will cause this DTC to set.

Test the HO2S heater high control circuit, sensor side, for a short to the HO2S body. Refer to Circuit Testing in Wiring Systems.

Did you find the condition?

--

Go to Step 21

Go to Step 15

15

Important: Perform the following test on HO2S bank 1 sensor 1 and HO2S bank 2 sensor 1. A condition in either sensor will cause this DTC to set.

Measure the resistance between the HO2S heater high control circuit, sensor side, and the HO2S heater low reference circuit, sensor side. Refer to Circuit Testing in Wiring Systems.

Does the resistance of either sensor measure above or below the specified range?

2-50 ohms

Go to Step 21

Go to Step 17

16

  1. Disconnect the PCM connector containing the HO2S heater low reference circuit. Refer to Powertrain Control Module Replacement .
  2. Test the HO2S heater low reference circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 18

17

Important: Before replacing the suspected HO2S, inspect for and remove any source of contamination.

Inspect for the following conditions:

    • The use of incorrect silicon RTV sealant
    • An engine coolant leak into the combustion chamber
    • Excessive engine oil consumption.
    • Fuel contamination
    • An exhaust system leak or restriction
    • Incorrect fuel pressure

Did you find and correct the condition?

--

Go to Step 22

Go to Step 19

18

Inspect for poor connections at the harness connector of the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 20

19

Inspect for poor connections at the harness connector of the affected HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 22

Go to Step 19

20

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 22

--

21

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 or Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 .

Did you complete the replacement?

--

Go to Step 22

--

22

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 23

Go to Step 2

23

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK

DTC P1134 or P1154 4.8L or 5.3L w/Isolated Grounded HO2S

Circuit Description

This diagnostic applies only to vehicles built with isolated grounded heated oxygen sensors (HO2S). To identify the HO2S, refer to Engine Controls Component Views .

The powertrain control module (PCM) monitors the HO2S activity. During the monitor period the PCM counts the number of times that the HO2S responds from rich to lean and from lean to rich and adds the amount of time needed to complete all transitions. With this information, an average time for all transitions can be determined. The PCM then divides the rich to lean average by the lean to rich average to obtain a ratio. A DTC sets if the HO2S ratio is not within range.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0131, P0132, P0134, P0135, P0151, P0152, P0154, P0155, P0200, P0300, P0401, P0404, P0405, P0440, P0442, P0446, P0452, P0453, P1120, P1125, P1220, P1221, P1258, P1404, P1441, P1514, P1515, P1516, P1517, or P1518 are not set.
    • The engine coolant temperature (ECT) is more than 65°C (149°F).
    • The engine run time is more than 160 seconds.
    • The evaporative emission (EVAP) purge solenoid command is more than 1 percent.
    • The mass air flow (MAF) is between 23-50 g/s.
    • The engine speed is between 1,200-3,000 RPM.
    • For vehicles without throttle-actuated control (TAC), the throttle position (TP) is more than 5 percent.
    • For vehicles with TAC, the TP indicated angle is 5 percent more than the value observed at idle.
    • The vehicle is operating in Closed Loop.
    • The ignition 1 signal is between 9-18 volts.
    • The fuel tank level remaining is more than 10 percent.
    • The fuel alcohol content is less than 90 percent.
    • Intrusive tests are not in progress.
    • The scan tool output controls are not active.
    • The above conditions are met for 100 seconds.

Conditions for Setting the DTC

The HO2S transition time ratio is not within a calibrated range.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Diagnostic Aids

Important: Never solder the HO2S wires. For proper wire and connector repairs, refer to Wiring Repairs or Connector Repairs in Wiring Systems.

Inspect for the following conditions:

    • An improperly installed air cleaner outlet duct
    • The air cleaner outlet duct for a collapsed duct, restrictions, or a missing or plugged air filter
    • Throttle body and intake manifold vacuum leaks
    • A damaged or blocked throttle body inlet
    • Exhaust system for corrosion, leaks, or loose or missing hardware. Refer to Exhaust Leakage in Engine Exhaust
    • The HO2S is installed securely and the pigtail harness is not contacting the exhaust manifold or wires
    • HO2S contamination
    • The vacuum hoses for splits, kinks, and proper connections
    • Excessive water, alcohol, or other contaminants in the fuel. Refer to Alcohol/Contaminants-in-Fuel Diagnosis
    • PCM sensor grounds that are clean, tight, and properly positioned

An intermittent may be caused by any of the following conditions:

    • A poor connection
    • Rubbed through wire insulation
    • A broken wire inside the insulation

Thoroughly inspect any circuitry that is suspected of causing the intermittent complaint. Refer to Testing for Intermittent Conditions and Poor Connections in Wiring Systems.

If a repair is necessary, refer to Wiring Repairs or Connector Repairs in Wiring Systems.

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. After the ignition is turned ON, the HO2S heater heats up causing the HO2S signal voltage to either increase or decrease. This indicates that the HO2S heater is OK.

  2. If the HO2S voltage is varying outside the specified range, the condition is not present.

  3. If the test lamp illuminates, the low reference circuit between the HO2S and PCM terminal C1-63 is OK and the PCM low reference terminal is OK.

  4. If the voltage is below the specified value, the high signal circuit, the low reference circuit, and the PCM are OK.

  5. The opposite bank HO2S must be disconnected to isolate a short to ground in the HO2S heater ignition 1 voltage circuit.

  6. Resistance within the specified range indicates the HO2S heater is OK.

Step

Action

Values

Yes

No

Important: This diagnostic applies only to vehicles built with isolated grounded HO2S. To identify the HO2S, refer to Engine Controls Component Views .

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: Allow the engine to cool for one-half hour before proceeding with this diagnostic. This allows the HO2S signal voltage to return to bias voltage, approximately 447 mV.

  1. Install a scan tool.
  2. Turn ON the ignition, with the engine OFF.
  3. Immediately observe the affected HO2S voltage for 2 minutes.

Does the HO2S voltage go from bias voltage to more than or less than the specified range?

300-600 mV

Go to Step 3

Go to Step 5

3

  1. Start the engine.
  2. Allow the engine to reach operating temperature.
  3. Raise and hold the engine speed at 1,200 RPM for 2 minutes.
  4. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage varying outside the specified range?

350-550 mV

Go to Step 4

Go to Step 5

4

  1. Observe the Freeze Frame/Failure Records data for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text or as close to the Freeze Frame/Failure Records data that you observed.

Does the DTC fail this ignition?

--

Go to Step 5

Go to Intermittent Conditions

5

Are Both DTCs P1134 and P1154 set?

--

Go to Step 6

Go to Step 7

6

  1. Turn OFF the ignition.
  2. Disconnect the HO2S bank 1 sensor 1 connector.
  3. Probe the HO2S low reference circuit with a test lamp that is connected to battery positive.

Does the test lamp illuminate?

--

Go to Step 11

Go to Step 10

7

  1. Turn OFF the ignition.
  2. Disconnect the affected HO2S connector.
  3. Jumper the HO2S high signal circuit to the low reference circuit.
  4. Turn ON the ignition, with the engine OFF.
  5. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage less than the specified value?

200 mV

Go to Step 11

Go to Step 8

8

  1. Turn OFF the ignition.
  2. Disconnect the PCM connector containing the HO2S high signal circuit. Refer to Powertrain Control Module Replacement .
  3. Test the HO2S high signal circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 24

Go to Step 9

9

Test for an open between terminal A of the affected sensor harness connector and one of the following PCM terminals:

    • If DTC P1134 is set, use C1-29
    • If DTC P1154 is set, use C1-26

Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 24

Go to Step 19

10

  1. Disconnect the PCM connector containing the HO2S low reference circuit. Refer to Powertrain Control Module Replacement .
  2. Test the low reference circuit for an open between HO2S bank 1 sensor 1 terminal A and PCM terminal C1-63.
  3. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 24

Go to Step 19

11

Remove the jumper from the previous step, if applicable.

Is the O2A fuse open?

--

Go to Step 14

Go to Step 12

12

  1. Turn ON the ignition, with the engine OFF.
  2. Probe the affected HO2S ignition 1 voltage circuit with a test lamp that is connected to a good ground.

Does the test lamp illuminate?

--

Go to Step 13

Go to Step 20

13

  1. Connect a test lamp between the affected HO2S ignition 1 voltage circuit and the HO2S heater ground circuit.
  2. Turn ON the ignition, with the engine OFF.

Does the test lamp illuminate?

--

Go to Step 17

Go to Step 21

14

  1. Disconnect the opposite bank HO2S pigtail connector.
  2. Test the HO2S ignition 1 voltage circuit for a short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.
  3. Replace the O2A fuse.

Did you find and correct a short to ground in the ignition 1 voltage circuit?

--

Go to Step 24

Go to Step 15

15

Important: Perform the following test on HO2S bank 1 sensor 1 and HO2S bank 2 sensor 1. A condition in either sensor will cause this DTC to set.

Test the HO2S ignition 1 voltage circuit, sensor side, for a short to the HO2S body. Refer to Circuit Testing in Wiring Systems.

Did you find the condition?

--

Go to Step 22

Go to Step 16

16

Important: Perform the following test on HO2S bank 1 sensor 1 and HO2S bank 2 sensor 1. A condition in either sensor will cause this DTC to set.

Measure the resistance between the HO2S ignition 1 voltage circuit, sensor side, and the HO2S heater ground circuit, sensor side. Refer to Circuit Testing in Wiring Systems.

Does the resistance of either sensor measure above or below the specified range?

2-50 ohms

Go to Step 22

Go to Intermittent Conditions

17

Important: Before replacing the suspected HO2S, inspect for and remove any source of contamination.

Inspect for the following conditions:

    • The use of incorrect silicon RTV sealant
    • An engine coolant leak into the combustion chamber
    • Excessive engine oil consumption
    • Fuel contamination
    • An exhaust system leak or restriction
    • Incorrect fuel pressure

Did you find and correct the condition?

--

Go to Step 24

Go to Step 18

18

Inspect for poor connections at the harness connector of the affected HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 24

Go to Step 22

19

Inspect for poor connections at the harness connector of the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 24

Go to Step 23

20

Repair the open in the ignition 1 voltage circuit. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 24

--

21

Repair the open in the HO2S heater ground circuit. Refer to Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 24

--

22

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 or Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 .

Did you complete the replacement?

--

Go to Step 24

--

23

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 24

--

24

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 25

Go to Step 2

25

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK