The manifold absolute pressure (MAP) sensor responds to pressure changes in the intake manifold. The pressure changes occur based on the engine load. The MAP sensor has the following circuits:
• | 5-volt reference circuit |
• | Low reference circuit |
• | MAP sensor signal circuit |
The powertrain control module (PCM) supplies 5 volts to the MAP sensor on the 5-volt reference circuit. The PCM also provides a ground on the low reference circuit. The MAP sensor provides a signal to the PCM on the MAP sensor signal circuit which is relative to the pressure changes in the manifold. The PCM should detect a low signal voltage at a low MAP, such as during an idle or a deceleration. The PCM should detect a high signal voltage at a high MAP, such as the ignition is ON, with the engine OFF, or at a wide open throttle (WOT). The MAP sensor is also used in order to determine the barometric pressure (BARO). This occurs when the ignition switch is turned ON, with the engine OFF. The BARO reading may also be updated whenever the engine is operated at WOT. The PCM monitors the MAP sensor signal for voltage outside of the normal range.
If the PCM detects a MAP sensor signal voltage that is excessively low, DTC P0107 sets.
This diagnostic procedure supports the following DTC:
DTC P0107 Manifold Absolute Pressure (MAP) Sensor Circuit Low Voltage
• | DTC P0122 or P0123 is not set. |
• | The ignition is ON. |
• | The engine speed is less than 1,000 RPM. |
OR |
• | The engine speed is more than 1,000 RPM and the throttle position is more than 15 percent. |
• | This DTC runs continuously within the enabling conditions. |
The MAP sensor voltage is less than 0.2 volts for at least 6.25 seconds.
• | The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
• | If a component 5-volt reference circuit is shorted to ground or shorted to voltage, the other 5-volt reference circuits may be affected. |
• | If this DTC is determined to be intermittent, refer to Intermittent Conditions . |
Step | Action | Values | Yes | No |
---|---|---|---|---|
Schematic Reference: Engine Controls Schematics Connect End View Reference: Powertrain Control Module Connector End Views or Engine Controls Connector End Views | ||||
1 | Did you perform the Diagnostic System Check - Vehicle? | -- | Go to Step 2 | Go to Diagnostic System Check - Vehicle in Vehicle DTC Information |
2 |
Does the scan tool indicate that the voltage is less than the specified value? | 0.2 V | Go to Step 4 | Go to Step 3 |
3 |
Does the DTC fail this ignition? | -- | Go to Step 4 | Go to Diagnostic Aids |
4 | Test for an intermittent and for a poor connection at the MAP sensor. Refer to Testing for Intermittent Conditions and Poor Connectionsand Connector Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 12 | Go to Step 5 |
5 |
Is the voltage more than the specified value? | 4.8 V | Go to Step 6 | Go to Step 7 |
6 | Connect a 3-amp fused jumper wire between the 5-volt reference circuit of the MAP sensor and the signal circuit of the MAP sensor. Does the scan tool indicate that the voltage is more than the specified value? | 4.9 V | Go to Step 10 | Go to Step 8 |
7 | Test the 5-volt reference circuit of the MAP sensor for an open or a short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 12 | Go to Step 9 |
8 | Test the signal circuit of the MAP sensor for a short to ground or an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | -- | Go to Step 12 | Go to Step 9 |
9 | Test for an intermittent and for a poor connection at the powertrain control module (PCM). Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairsin Wiring Systems. Did you find and correct the condition? | -- | Go to Step 12 | Go to Step 11 |
10 | Replace the MAP sensor. Refer to Manifold Absolute Pressure Sensor Replacement . Did you complete the replacement? | -- | Go to Step 12 | -- |
11 | Replace the PCM. Refer to Control Module References in Computer/Integrating Systems for replacement, setup, and programming. Did you complete the replacement? | -- | Go to Step 13 | -- |
12 | Perform the Fuel Trim Reset procedure with a scan tool. Did you complete the procedure? | -- | Go to Step 13 | -- |
13 |
Did the DTC fail this ignition? | -- | Go to Step 2 | Go to Step 14 |
14 | Observe the Capture Info with a scan tool. Are there any DTCs that have not been diagnosed? | -- | Go to Diagnostic Trouble Code (DTC) List - Vehicle in Vehicle DTC Information | System OK |