GM Service Manual Online
For 1990-2009 cars only

DTC P0134 or P0154 with RPO CTF

Circuit Description

Heated oxygen sensors (HO2S) are used for fuel control and post catalyst monitoring. Each HO2S compares the oxygen content of the surrounding air with the oxygen content in the exhaust stream. The HO2S must reach operating temperature to provide an accurate voltage signal. Heating elements inside the HO2S minimize the time required for the sensors to reach operating temperature. The powertrain control module (PCM) supplies the HO2S with a reference, or bias, voltage of about 450 mV. When the engine is first started the PCM operates in open loop, ignoring the HO2S voltage signal. Once the HO2S reaches operating temperature and closed loop is achieved, the HO2S generates a voltage within a range of 0-1,000 mV that fluctuates above and below bias voltage. High HO2S voltage indicates a rich exhaust stream; low HO2S voltage indicates a lean exhaust stream. If the PCM detects that the HO2S voltage remains within the bias voltage range, DTCs P0134 or P0154 will set.

Conditions for Running the DTC

    • DTCs P0102, P0103, P0107, P0108, P0112, P0113, P0117, P0118, P0120, P0200, P0220, P0404, P0405, P1125, P1404, P1514, P1515, P1516, P1518, P2108, P2135 are not set.
    • The Engine Run Time parameter is more than 300 seconds.
    • The Ignition 1 Signal parameter is between 10-18 volts.

Conditions for Setting the DTC

The PCM detects that the affected HO2S voltage parameter is between 350-550 mV for 60 seconds.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.
    • The control module commands the Loop Status open.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. If the voltage is varying above and below the specified value, the condition is not present.

  2. With no fault present, the test lamp will blink once per second.

Step

Action

Value(s)

Yes

No

Schematic Reference: Engine Controls Schematics

Connector End View Reference: Powertrain Control Module Connector End Views or Engine Controls Connector End Views

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: Whenever the HO2S heaters are commanded ON with a scan tool, they will continue to be pulsed ON once per second until the ignition is turned OFF for 30 seconds.

  1. Turn ON the ignition, with the engine OFF.
  2. Command the HO2S heaters ON with a scan tool.
  3. Wait 15 seconds to allow the HO2S heater current to stabilize.
  4. Observe the affected HO2S heater current parameter with a scan tool.

Is the HO2S heater current parameter within the specified range?

0.25-3.125 A

Go to Step 3

Go to Step 13

3

  1. Start the engine.
  2. Allow the engine to reach operating temperature. Refer to Scan Tool Data List .
  3. Operate the engine at 1,500 RPM for 30 seconds.
  4. Observe the affected HO2S voltage parameter with a scan tool.

Is the HO2S voltage parameter varying above and below the specified range?

300-600 mV

Go to Step 4

Go to Step 5

4

  1. Observe the Freeze Frame/Failure Records for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 5

Go to Intermittent Conditions

5

  1. Turn OFF the ignition.
  2. Disconnect the affected HO2S.
  3. Turn ON the ignition, with the engine OFF.
  4. Observe the HO2S voltage parameter with a scan tool.

Is the HO2S voltage parameter more than the specified value?

800 mV

Go to Step 7

Go to Step 6

6

Measure the voltage from the high signal circuit of the HO2S harness connector on the engine harness side to a good ground with the DMM. Refer to Circuit Testing in Wiring Systems.

Is the voltage more than the specified value?

0.2 V

Go to Step 8

Go to Step 9

7

Important: The sensor may be damaged if the circuit is shorted to a voltage source.

Test the HO2S high signal circuit for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 24

8

Measure the voltage from the low signal circuit of the HO2S harness connector on the engine harness side to a good ground with a DMM. Refer to Circuit Testing in Wiring Systems.

Is the voltage more than the specified value?

2 V

Go to Step 12

Go to Step 10

9

Test the HO2S high signal circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 24

10

  1. Connect a 3-amp fused jumper wire between the high signal circuit of the HO2S harness connector on the engine harness side and the low signal circuit of the HO2S harness connector on the engine harness side.
  2. Observe the HO2S voltage parameter with a scan tool.

Is the HO2S voltage parameter less than the specified value?

100 mV

Go to Step 23

Go to Step 11

11

Test the HO2S low signal circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 24

12

Test the HO2S low signal circuit for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 24

13

Inspect the O2A fuse.

Is the O2A fuse open?

--

Go to Step 14

Go to Step 15

14

  1. Test the ignition 1 voltage circuit for a short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.
  2. Replace the O2A fuse.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 17

15

  1. Disconnect the affected HO2S.
  2. Turn ON the ignition, with the engine OFF.
  3. Probe the ignition 1 voltage circuit of the HO2S harness connector on the engine harness side with a test lamp that is connected to a good ground. Refer to Probing Electrical Connectors in Wiring Systems.

Does the test lamp illuminate?

--

Go to Step 16

Go to Step 26

16

Important: The test lamp may blink prior to commanding the heaters ON. This is because the heaters were commanded ON in a previous step. To command the heaters OFF, turn OFF the ignition for 30 seconds.

  1. Connect a test lamp between the ignition 1 voltage circuit of the HO2S harness connector on the engine harness side and the HO2S heater low control circuit of the HO2S harness connector on the engine harness side.
  2. Command the HO2S heaters ON with a scan tool.

Does the test lamp blink once per second?

--

Go to Step 18

Go to Step 19

17

Important: Perform the following test on all HO2S which are supplied voltage by the suspect circuit.

Test the ignition 1 voltage circuit on the sensor side of the HO2S connector for a short to ground. Refer to Circuit Testing in Wiring Systems.

Is any sensor shorted to ground?

--

Go to Step 27

Go to Intermittent Conditions

18

  1. Measure the resistance of the following circuits with a DMM:
  2. • HO2S heater low control circuit
    • Ignition 1 voltage circuit
  3. Refer to Circuit Testing in Wiring Systems.

Is the resistance of either circuit more than the specified value?

3 ohms

Go to Step 25

Go to Step 23

19

Is the test lamp on steady?

--

Go to Step 20

Go to Step 21

20

Test the HO2S heater low control circuit for a short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 24

21

Test the HO2S heater low control circuit for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 22

22

Test the HO2S heater low control circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 24

23

Test for an intermittent and for a poor connection at the HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 27

24

Test for an intermittent and for a poor connection at the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 29

Go to Step 28

25

Repair the circuit with high resistance. Refer to Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 29

--

26

Repair the open in the ignition 1 voltage circuit. Refer to Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 29

--

27

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 or Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 .

Did you complete the replacement?

--

Go to Step 29

--

28

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 29

--

29

  1. Clear the DTCs with a scan tool.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records.

Did the DTC fail this ignition?

--

Go to Step 2

Go to Step 30

30

Observe the Capture Info with a scan tool.

Are there any DTCs that have not been diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK

DTC P0134 or P0154 without RPO CTF

Circuit Description

Heated oxygen sensors (HO2S) are used for fuel control and post catalyst monitoring. Each HO2S compares the oxygen content of the surrounding air with the oxygen content of the exhaust stream. When the vehicle is first started, the powertrain control module (PCM) operates in an Open Loop mode, ignoring the HO2S signal voltage when calculating the air-to-fuel ratio. The PCM circuitry that monitors the HO2S generates a reference or bias voltage of 450 mV when the sensor is cold, high resistance. Once the HO2S warms up, the HO2S generates a voltage within a range of 0-1,000 mV, depending on the exhaust gas oxygen content. High HO2S voltage output indicates a rich fuel mixture. Low HO2S voltage output indicates a lean mixture. Once fueling goes Closed Loop, the HO2S voltage will fluctuate above and below the bias voltage. A heating element inside the HO2S reduces the time required for the sensor to reach operating temperature, and provide an accurate voltage signal.

This DTC is designed to detect an HO2S voltage that remains at a nominal value +/- some calibrated range for a calibrated number of seconds. This nominal value is usually the bias voltage.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0200, P0300, P0351-P0358, P0400, P0401, P0404, P0405, P0410, P0440, P0442, P0443, P0446, P0449, P0452, P0453, P1120, P1125, P1220, P1221, P1258, P1404, P1441, P1514, P1515, P1516, P1517, or P1518 are not set.
    • The secondary air injection (AIR) and the exhaust gas recirculation (EGR) diagnostics are not active.
    • The ignition voltage is between 11-18 volts.
    • The engine run time is more than 409 seconds.

Conditions for Setting the DTC

The HO2S signal voltage is steady between 350-550 mV for 60 seconds or more.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. After the HO2S heater is commanded ON, the HO2S heater heats up causing the HO2S signal voltage to either increase or decrease. This indicates that the HO2S heater is OK.

  2. If the test lamp illuminates, the low reference circuit between the HO2S and PCM terminal C1-63 is OK and the PCM low reference terminal is OK.

  3. If the voltage is below the specified value, the high signal circuit, the low reference circuit, and the PCM are OK.

  4. The opposite bank HO2S must be disconnected to isolate a short to ground in the HO2S heater high control circuit.

  5. Resistance within the specified range indicates the HO2S heater is OK.

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

Connector End View Reference: Powertrain Control Module Connector End Views or Engine Controls Connector End Views

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: Allow the engine to cool for one-half hour before proceeding with this diagnostic. This allows the HO2S signal voltage to return to bias voltage, approximately 447 mV.

  1. Turn OFF the ignition.
  2. Install a scan tool.
  3. Command the HO2S heater ON with a scan tool.
  4. Immediately observe the affected HO2S voltage for 2 minutes.

Does the HO2S voltage go from bias voltage to more than or less than the specified range?

350-550 mV

Go to Step 3

Go to Step 5

3

  1. Start the engine.
  2. Allow the engine to reach operating temperature.
  3. Raise and hold the engine speed at 1,200 RPM for 2 minutes.
  4. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage varying outside the specified range?

350-550 mV

Go to Step 4

Go to Step 5

4

  1. Observe the Freeze Frame/Failure Records for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text or as close to the Freeze Frame/Failure Records that you observed.

Does the DTC fail this ignition?

--

Go to Step 5

Go to Intermittent Conditions

5

Are both DTCs P0134 and P0154 set?

--

Go to Step 6

Go to Step 7

6

  1. Turn OFF the ignition.
  2. Disconnect the bank 1 sensor 1 HO2S connector.
  3. Probe the HO2S low reference circuit with a test lamp that is connected to battery positive.

Does the test lamp illuminate?

--

Go to Step 11

Go to Step 10

7

  1. Turn OFF the ignition.
  2. Disconnect the affected HO2S connector.
  3. Jumper the HO2S high signal circuit to the low reference circuit.
  4. Turn ON the ignition, with the engine OFF.
  5. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage less than the specified value?

200 mV

Go to Step 11

Go to Step 8

8

  1. Turn OFF the ignition.
  2. Disconnect the PCM connector containing the HO2S high signal circuit. Refer to Powertrain Control Module Replacement .
  3. Test the HO2S high signal circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 9

9

  1. Test for an open between terminal A of the affected sensor harness connector and one of the following powertrain control module (PCM) terminals:
  2. • If DTC P0134 is set use C1-29
    • If DTC P0154 is set use C1-26
  3. Repair as necessary. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 17

10

  1. Disconnect the PCM connector containing the HO2S low reference circuit. Refer to Powertrain Control Module Replacement .
  2. Test the low reference circuit for an open between HO2S bank 1 sensor 1 terminal A and PCM terminal C1-60.
  3. Repair as necessary. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 17

11

  1. If applicable, remove the jumper from the previous step.
  2. Disconnect the opposite bank HO2S connector.
  3. Perform the following:
  4. • If only one DTC is set, P0134 or P0154, probe the affected HO2S heater high control circuit with a test lamp that is connected to a good ground.
    • If both DTCs P0134 and P0154 are set, probe HO2S bank 1 sensor 1 heater high control circuit with a test lamp that is connected to a good ground.
  5. Command the HO2S heater ON with a scan tool.

Does the test lamp illuminate?

--

Go to Step 12

Go to Step 13

12

  1. Connect a test lamp between the affected HO2S heater high control circuit and the HO2S heater low control circuit.
  2. Command the HO2S heater ON with a scan tool.

Does the test lamp illuminate?

--

Go to Step 14

Go to Step 16

13

  1. Disconnect the PCM connector containing the HO2S heater high control circuit. Refer to Powertrain Control Module Replacement .
  2. Test the HO2S heater high control circuit for an open or short to ground. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 17

14

Important: Perform the following test on HO2S bank 1 sensor 1 and HO2S bank 2 sensor 1. A condition in either sensor will cause this DTC to set.

Test the HO2S heater high control circuit, sensor side, for a short to the HO2S body. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find the condition?

--

Go to Step 20

Go to Step 15

15

Important: Perform the following test on HO2S bank 1 sensor 1 and HO2S bank 2 sensor 1. A condition in either sensor will cause this DTC to set.

Measure the resistance between the HO2S heater high control circuit, sensor side, and the HO2S heater low control circuit, sensor side. Refer to Circuit Testing in Wiring Systems.

Does the resistance of either sensor measure above or below the specified range?

2-50 ohms

Go to Step 20

Go to Step 18

16

  1. Disconnect the PCM connector containing the HO2S heater low control circuit. Refer to Powertrain Control Module Replacement .
  2. Test the HO2S heater low reference circuit for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 17

17

Inspect for poor connections at the harness connector of the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 19

18

Inspect for poor connections at the harness connector of the affected HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 21

Go to Step 20

19

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 21

--

20

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 and Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 .

Did you complete the replacement?

--

Go to Step 21

--

21

  1. Clear the DTCs with a scan tool.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Did the DTC run and pass?

--

Go to Step 22

Go to Step 2

22

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK