The throttle position (TP) sensors 1 and 2 are potentiometer type sensors, each with 3 circuits:
• | A 5-volt reference circuit |
• | A low reference circuit |
• | A signal circuit |
The TP sensors are used to determine the throttle plate angle for various engine management systems. The control module provides each TP sensor a 5-volt reference circuit and a low reference circuit. The TP sensors then provide the control module with signal voltage proportional to throttle plate movement. Both TP sensor signal voltages are low at closed throttle and increase as the throttle opens. When the control module detects that TP sensor 1 signal and TP sensor 2 signals disagree or signal voltages are outside the predetermined range, this DTC sets.
• | DTC P1518 are not set. |
• | The ignition switch is in the crank or run position. |
• | The ignition voltage is greater than 5.23 volts. |
• | The TP sensor 2 disagrees with TP sensor 1 by more than 7.5 percent. |
• | All the above conditions are present for less than 1 second. |
• | The control module illuminates the malfunction indicator lamp (MIL) when the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The control module stores this information in the Freeze Frame and/or the Failure Records. |
• | The control module commands the TAC system to operate in the Reduced Engine Power mode. |
• | A message center or an indicator displays Reduced Engine Power. |
• | Under certain conditions the control module commands the engine OFF. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
• | Inspect the TAC module connectors for signs of water intrusion. When this occurs, multiple DTCs could be set with no circuit or component conditions found during diagnostic testing. |
• | When the TAC module detects a condition within the TAC system, more than one TAC system related DTC may set. This is due to the many redundant tests run continuously on this system. Locating and repairing one individual condition may correct more than one DTC. Disconnecting components during testing may set additional DTCs. Keep this in mind when reviewing the stored information, Capture Info. |
• | If this DTC is determined to be intermittent, refer to Intermittent Conditions . |
The number below refers to the step number on the diagnostic table.
Step | Action | Yes | No |
---|---|---|---|
Schematic Reference: Engine Controls Schematics Connector End View Reference: Powertrain Control Module Connector End Views or Engine Controls Connector End Views | |||
1 | Did you perform the Diagnostic System Check-Engine Controls? | Go to Step 2 | |
2 | Is DTC P1515, P1516, or P1518 also set? | Go to Step 3 | |
3 |
Does the scan tool TP sensor 1 and 2 Agree/Disagree parameter indicate Disagree? | Go to Step 5 | Go to Step 4 |
4 |
Does the TP sensor Agree/Disagree parameter change from Agree to Disagree during the above test? | Go to Step 18 | Go to Step 5 |
5 |
Did you find and correct the condition? | Go to Step 20 | Go to Step 6 |
6 | Use a DMM in order to test for a short between the TP sensor 1 5-volt reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 7 |
7 | Use a DMM in order to test the TP sensor 1 signal circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 8 |
8 | Use a DMM in order to test for a short between the TP sensor 1 signal circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 9 |
9 | Use a DMM in order to test the TP sensor 1 low reference circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 10 |
10 | Use a DMM in order to test for a short between the TP sensor 1 low reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 11 |
11 | Use a DMM in order to test the TP sensor 2 5-volt reference circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 12 |
12 | Use a DMM in order to test for a short between the TP sensor 2 5-volt reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 13 |
13 | Use a DMM in order to test the TP sensor 2 signal circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 14 |
14 | Use a DMM in order to test for a short between the TP sensor 2 signal circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 15 |
15 | Use a DMM in order to test the TP sensor 2 low reference circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 16 |
16 | Use a DMM in order to test for a short between the TP sensor 2 low reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 17 |
17 | Inspect for poor connections at the harness connector of the TAC module. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 18 |
18 | Inspect for poor connections at the harness connector of the TP sensor. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 19 |
19 | Replace the throttle body assembly. Refer to Throttle Body Assembly Replacement . Did you complete the replacement? | Go to Step 20 | -- |
20 |
Does the DTC run and pass? | Go to Step 21 | Go to Step 2 |
With a scan tool, observe the stored Information, Capture Info. Does the scan tool display any DTCs that you have not diagnosed? | System OK |