GM Service Manual Online
For 1990-2009 cars only

Circuit Description

The boost pressure sensor responds to pressure changes in the intake manifold. This pressure is created by the turbocharger and changes with accelerator pedal position (APP) and engine speed. The ECM uses this information to assist in diagnosis of the barometric pressure (BARO) sensor and to provide engine overboost protection. The boost pressure sensor has a 5-volt reference circuit, a low reference circuit, and a signal circuit. The engine control module (ECM) supplies 5 volts to the boost pressure sensor on the 5-volt reference 2 circuit, and provides a ground on a low reference circuit. The boost pressure sensor provides a signal to the ECM on a signal circuit relative to the pressure changes. The ECM monitors the boost pressure sensor signal for voltage outside of the normal range. If the ECM detects a boost pressure sensor signal voltage that is excessively high, this diagnostic trouble code (DTC) will set.

Conditions for Running the DTC

The diagnostic runs continuously.

Conditions for Setting the DTC

The boost pressure is more than 254 kPa for 2 seconds.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.
    • The ECM limits fuel delivery.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Test Description

The number below refesr to the step number on the diagnostic table.

  1. Operate the vehicle within the same conditions as when the DTC failed. If you cannot duplicate the DTC, the information included in the Freeze Frame/Failure Records data can aid in locating an intermittent condition.

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Start the engine.

Does the scan tool indicate that the boost sensor pressure is more than the specified value?

254 kPa

Go to Step 4

Go to Step 3

3

  1. Observe the Freeze Frame/Failure Records data for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text or as close to the Freeze Frame/Failure Records data that you observed.

Does the DTC fail this ignition?

--

Go to Step 4

Go to Intermittent Conditions

4

  1. Turn OFF the ignition.
  2. Disconnect the boost sensor electrical connector. Refer to Boost Sensor Replacement .
  3. Turn the ignition ON, with the engine OFF.

Does the scan tool indicate that the boost sensor pressure is less than the specified value?

37 kPa

Go to Step 5

Go to Step 6

5

Probe the low reference circuit with a test lamp that is connected to battery voltage.

Does the test lamp illuminate?

--

Go to Step 8

Go to Step 7

6

Test the signal circuit of the boost sensor for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 12

Go to Step 9

7

Test the low reference circuit of the boost sensor for an open. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 12

Go to Step 9

8

Inspect for poor connections at the boost sensor. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 12

Go to Step 10

9

Inspect for poor connections at the ECM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 12

Go to Step 11

10

Replace the boost sensor. Refer to Boost Sensor Replacement .

Did you complete the replacement?

--

Go to Step 12

--

11

Replace the ECM. Refer to Engine Control Module Replacement .

Did you complete the replacement?

--

Go to Step 12

--

12

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 13

Go to Step 2

13

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK