GM Service Manual Online
For 1990-2009 cars only

Circuit Description

The heated oxygen sensor (HO2S) is a sensor designed to create a voltage relative to the oxygen content in the engine exhaust stream. The control module supplies the HO2S with signal high and low circuits. Ignition voltage and ground are supplied to the HO2S heater by independent circuits. The oxygen content of the exhaust indicates when the engine is operating lean or rich. When the HO2S detects that the engine is operating rich, the signal voltage is high, and decreases the signal voltage as the engine runs leaner. This oscillation above and below the bias voltage, sometimes referred to as activity or switching, can be monitored with the HO2S signal voltage.

The HO2S heater quickly warms the sensor to operating temperature. The heater also maintains the operating temperature during extended idle conditions. The HO2S must reach a high temperature to produce a voltage. When the HO2S reaches operating temperature, the control module monitors the HO2S bias, or reference, voltage. The control module the HO2S signal voltage for Closed Loop fuel control. During normal Closed Loop fuel control operation, the control module will add fuel, or enrich the mixture, when the HO2S detects a lean exhaust content. The control module will subtract fuel, or "lean-out" the mixture, when the HO2S detects a rich exhaust condition.

This DTC determines if the HO2S heater circuit is functioning properly by monitoring the time required for the HO2S to reach the operating temperature. This DTC sets when the powertrain control module (PCM) fails to detect HO2S voltage transitions above and below the bias range within a specified amount of time.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0121, P0122, P0123, P0200, P0440, P0442, P0446, P0452, P0453, or P1441 are not set.
    • The HO2S voltage is between 425-475 mV at engine start-up.
    • The intake air temperature (IAT) and the engine coolant temperature (ECT) are less than 50°C (122°F), and are within 8°C (14.5°F) of each other at engine start-up.
    • The ignition 1 signal is between 9-18 volts.
    • Intrusive tests are not in progress.
    • The scan tool output controls are not active.

Conditions for Setting the DTC

P0135 or P0155

The HO2S voltage remains within 150 mV of the start-up voltage for a predetermined amount of time, based on ECT and air flow.

P0141

The HO2S voltage remains within 75 mV of the start-up voltage for a predetermined amount of time, based on ECT and air flow.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. After the ignition is turned ON, the HO2S heater heats up causing the HO2S signal voltage to either increase or decrease. This indicates that the HO2S heater is OK.

  2. All sensors must be disconnected to isolate a short to ground in the HO2S ignition 1 voltage circuit.

  3. Resistance within the specified range indicates the HO2S heater is OK.

Step

Action

Values

Yes

No

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: If DTC P0300 is also set, diagnose P0300 first. Refer to DTC P0300 .

Important: Allow the engine to cool for one-half hour before proceeding with this diagnostic. This allows the HO2S signal voltage to return to bias voltage, approximately 447 mV.

  1. Turn OFF the ignition.
  2. Install a scan tool.
  3. Turn ON the ignition, with the engine OFF.
  4. Immediately observe the affected HO2S voltage for 2 minutes.

Does the HO2S voltage go from bias voltage to more than or less than the specified range?

300-600 mV

Go to Step 3

Go to Step 4

3

  1. Observe the Freeze Frame/Failure Records data for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the conditions for Running the DTC as specified in the supporting text or as close to the Freeze Frame/Failure Records data that you observed.

Does the DTC fail this ignition?

--

Go to Step 4

Go to Intermittent Conditions

4

Is the ENG 1 fuse open?

--

Go to Step 7

Go to Step 5

5

  1. Turn OFF the ignition.
  2. Disconnect the affected HO2S connector.
  3. Turn ON the ignition, with the engine OFF.
  4. Probe the HO2S ignition 1 voltage circuit with a test lamp that is connected to a good ground.

Does the test lamp illuminate?

--

Go to Step 6

Go to Step 11

6

  1. Connect a test lamp between the affected HO2S ignition 1 voltage circuit and the HO2S heater ground circuit.
  2. Turn ON the ignition, with the engine OFF.

Does the test lamp illuminate?

--

Go to Step 10

Go to Step 12

7

  1. Disconnect all three HO2S pigtail connectors.
  2. Test the HO2S ignition 1 voltage circuit for a short to ground. Refer to Circuit Testing and to Wiring Repairs in Wiring Systems.
  3. Replace the ENG 1 fuse.

Did you find and correct a short to ground in the ignition 1 voltage circuit?

--

Go to Step 14

Go to Step 8

8

Important: Perform the following test on HO2S bank 1 sensor 1, HO2S bank 2 sensor 1, and HO2S bank 1 sensor 2. A condition in any sensor will cause this DTC to set.

Test the HO2S ignition 1 voltage circuit, sensor side, for a short to the HO2S body. Refer to Circuit Testing in Wiring Systems.

Did you find the condition?

--

Go to Step 13

Go to Step 9

9

Important: Perform the following test on HO2S bank 1 sensor 1, HO2S bank 2 sensor 1, and HO2S bank 1 sensor 2. A condition in any sensor will cause this DTC to set.

Measure the resistance between the HO2S ignition 1 voltage circuit, sensor side, and the HO2S heater ground circuit, sensor side. Refer to Circuit Testing in Wiring Systems.

Does the resistance of any sensor measure above or below the specified range?

2-50 ohms

Go to Step 13

Go to Testing for Intermittent Conditions and Poor Connections in Wiring Systems

10

Inspect for poor connections at the harness connector of the affected HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and to Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 14

Go to Step 13

11

Repair the open in the ignition 1 voltage circuit. Refer to Circuit Testing and to Wiring Repairs in Wiring Systems.

Did you complete the repair?

--

Go to Step 14

--

12

Repair the open in the HO2S heater ground circuit. Refer to Wiring Repairs in Wiring Systems.

Did you complete the repair?

 

Go to Step 14

--

13

Replace the affected HO2S refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 or Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 or Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 .

Did you complete the replacement?

--

Go to Step 14

--

14

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 15

Go to Step 2

15

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK