GM Service Manual Online
For 1990-2009 cars only

Circuit Description

The heated oxygen sensor (HO2S) is a sensor designed to create a voltage relative to the oxygen content in the engine exhaust stream. The control module supplies the HO2S with signal high and low circuits. Ignition voltage and ground are supplied to the HO2S heater by independent circuits. The oxygen content of the exhaust indicates when the engine is operating lean or rich. When the HO2S detects that the engine is operating rich, the signal voltage is high. When the HO2S detects that the engine is operating lean, the signal voltage is low. This oscillation above and below the bias voltage, sometimes referred to as activity or switching, can be monitored with the HO2S signal voltage.

The HO2S contains a heater that is necessary in order to quickly warm the sensor to the operating temperature. The heater also maintains the operating temperature during extended idle conditions. The HO2S needs to be at a high temperature in order to produce a voltage. When the HO2S reaches the operating temperature, the control module monitors the HO2S bias, or reference, voltage. The control module also monitors the HO2S signal voltage for Closed Loop fuel control. During normal Closed Loop fuel control operation, the control module will add fuel, or enrich the mixture, when the HO2S detects a lean exhaust content. The control module will subtract fuel, or "lean out" the mixture, when the HO2S detects a rich exhaust condition.

This DTC is designed to detect an HO2S voltage that remains high for more than a specified number of seconds during the test conditions.

Conditions for Running the DTC

    • DTCs P0101, P0102, P0103, P0106, P0107, P0108, P0112, P0113, P0117, P0118, P0121, P0122, P0123, P0300, P0351, P0401, P0404, P0405, P0440, P0442, P0446, P0452, P0453, P1258, P1404, or P1441 are not set.
    • The air fuel ratio is between 14.5:1-14.7:1.
    • The throttle position (TP) sensor is between 3-70 percent.
    • The loop status is closed.
    • The ignition 1 signal is between 9-18 volts.
    • The fuel tank level remaining is more than 10 percent.
    • Intrusive tests are not in progress.
    • The scan tool output controls are not active.

Conditions for Setting the DTC

The HO2S voltage is more than 994 mV for 550 seconds.

Action Taken When the DTC Sets

    • The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
    • The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

    • The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail.
    • A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
    • A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
    • Clear the MIL and the DTC with a scan tool.

Diagnostic Aids

Important: Before you service the PCM, remove any debris from the PCM connector surfaces. Inspect the PCM connector gaskets when diagnosing or replacing the PCM. Ensure that the gaskets are installed correctly. The gaskets prevent water intrusion into the PCM.

    • Check the HO2S electrical connections for evidence of water intrusion--Water in the connector causes the B+ supply to the heater to bleed over to the signal circuit.
    • Check the fuel pressure--The system goes rich if the pressure is too high. The PCM compensates for some increase. If the fuel pressure is too high, a DTC may set. Refer to Fuel System Diagnosis .
    • Check for rich fuel injectors--Perform the Fuel Injector Balance Test. Refer to Fuel Injector Balance Test with Tech 2 , or to Fuel Injector Balance Test with Special Tool .
    • Check for a leaking injector--Refer to the Fuel System Diagnosis . Refer to Fuel Injector Balance Test with Tech 2 , or to Fuel Injector Balance Test with Special Tool .
    • Check the fuel pressure regulator--Inspect the vacuum line to the fuel pressure regulator for evidence of fuel. Refer to the Fuel System Diagnosis .
    • Check the evaporative emissions (EVAP) canister purge--Inspect the canister for fuel saturation. If the canister is full of fuel, check the canister control and the hoses. Refer to Evaporative Emission Control System Description .
    • Check the mass air flow (MAF) sensor--Disconnect the MAF sensor and note if the rich condition is corrected. If the condition is corrected, check for proper installation. If the MAF sensor is installed correctly, replace the MAF sensor. If the MAF sensor is installed backwards, the system goes rich. The plastic portion of the sensor has arrows that indicate the correct air flow direction. The arrows must point toward the engine.
    • Check the HO2S oxygen supply--An oxygen supply inside the HO2S is necessary for proper operation. The HO2S wires provides the supply of oxygen. Inspect the HO2S wires and the connections for breaks or for contamination. Refer to Heated Oxygen Sensor Wiring Repairs in Wiring Systems.
    • Check the TP sensor. An intermittent TP sensor output causes the system to go rich, due to a false indication of the engine accelerating. For an intermittent condition, refer to Symptoms - Engine Controls .

Test Description

The numbers below refer to the step numbers on the diagnostic table.

  1. If the voltage is above the specified value the condition is present.

  2. Jumpering the HO2S low signal circuit to ground is necessary for the PCM to correctly measure the voltage on the HO2S high signal circuit. If the HO2S voltage is within the specified range, the PCM and HO2S high signal circuit are OK.

Step

Action

Value(s)

Yes

No

Schematic Reference: Engine Controls Schematics

1

Did you perform the Diagnostic System Check-Engine Controls?

--

Go to Step 2

Go to Diagnostic System Check - Engine Controls

2

Important: With the engine running, observe the front HO2S voltage using a scan tool. If the front HO2S voltage is fixed below 200 mV, refer to DTC P0131 or P0151 .

  1. Allow the engine to reach operating temperature.
  2. With a scan tool, observe the HO2S voltage for the sensor that applies to this DTC.

Is the HO2S voltage more than the specified value?

994 mV

Go to Step 4

Go to Step 3

3

  1. Observe the Freeze Frame/Failure Records data for this DTC.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text or as close to the Freeze Frame/Failure Records data that you observed.

Does the DTC fail this ignition?

--

Go to Step 4

Go to Diagnostic Aids

4

  1. Turn OFF the ignition.
  2. Disconnect the HO2S connector for the sensor that applies to this DTC.
  3. Jumper the HO2S low signal circuit terminal on the engine harness side to a known good ground.
  4. Turn ON the ignition, with the engine OFF.
  5. Observe the HO2S voltage with a scan tool.

Is the HO2S voltage within the specified range?

350-550 mV

Go to Step 5

Go to Step 6

5

  1. The HO2S may be detecting a rich exhaust condition or may be contaminated. Check for the following conditions:
  2. • Water intrusion into the HO2S connector
    • Silicone contamination of the HO2S
    • Engine oil contaminated by fuel
    • Incorrect fuel pressure
    • Rich fuel injectors
    • An inaccurate MAF sensor
    • An evaporative emission (EVAP) canister purge condition
  3. Repair any of the above or similar engine conditions as necessary.

Did you find and correct the condition?

--

Go to Step 11

Go to Step 7

6

  1. Turn OFF the ignition.
  2. Disconnect the PCM connector that contains the HO2S high signal circuit. Refer to Powertrain Control Module Replacement
  3. Turn ON the ignition with the engine OFF.
  4. Test the HO2S high signal circuit for a short to voltage. Refer to Circuit Testing and Wiring Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 11

Go to Step 8

7

Inspect for poor connections at the harness connector of the HO2S. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 11

Go to Step 9

8

Inspect for poor connections at the harness connector of the PCM. Refer to Testing for Intermittent Conditions and Poor Connections and Connector Repairs in Wiring Systems.

Did you find and correct the condition?

--

Go to Step 11

Go to Step 10

9

Replace the affected HO2S. Refer to Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 or Heated Oxygen Sensor Replacement - Bank 2 Sensor 2 .

Did you complete the replacement?

--

Go to Step 11

--

10

Replace the PCM. Refer to Powertrain Control Module Replacement .

Did you complete the replacement?

--

Go to Step 11

--

11

  1. Use the scan tool in order to clear the DTCs.
  2. Turn OFF the ignition for 30 seconds.
  3. Start the engine.
  4. Operate the vehicle within the Conditions for Running the DTC as specified in the supporting text.

Does the DTC run and pass?

--

Go to Step 12

Go to Step 2

12

With a scan tool, observe the stored information, Capture Info.

Does the scan tool display any DTCs that you have not diagnosed?

--

Go to Diagnostic Trouble Code (DTC) List

System OK