Table 1: | TP Sensor Position Table |
The throttle position (TP) sensor is mounted on the throttle body assembly. The sensor is actually 2 individual TP sensors within 1 housing. Two separate signal, low-reference and 5-volt reference circuits are used to connect the TP sensor assembly to the throttle actuator control (TAC) module. The 2 sensors have opposite functionality.
The TP sensor 1 and the accelerator pedal position (APP) sensor 1 share a 5-volt reference circuit that are connected within the TAC module. The TP sensor 2 and the APP sensor 2 share a 5-volt reference circuit that are connected within the TAC module. If an out of range condition is detected with the TP sensor 2, this diagnostic trouble code (DTC) will set and the Reduced Engine Power message will be displayed.
The table below shows the percentage and voltage readings of the scan tool based on the position of the TP.
TP Sensor | Actual Throttle Plate Position | % Open as Observed on a Scan Tool | Voltage as Observed on a Scan Tool |
---|---|---|---|
1 | Closed | 0 | Below 1.0 |
1 | Open | 100 | Above 3.5 |
2 | Closed | 0 | Above 3.5 |
2 | Open | 100 | Below 1.0 |
• | DTCs P1517, or P1518 not set. |
• | Ignition in the crank or run position. |
• | Ignition voltage greater than 5.23 volts. |
• | The TP sensor 2 disagrees with TP sensor 1 by more than 7.5 percent. |
• | All above conditions present for less than 1 second. |
• | The control module illuminates the malfunction indicator lamp (MIL) when the diagnostic runs and fails. |
• | The control module records the operating conditions at the time the diagnostic fails. The control module stores this information in the Freeze Frame and/or the Failure Records. |
• | The control module commands the TAC system to operate in the Reduced Engine Power mode. |
• | A message center or an indicator displays Reduced Engine Power. |
• | Under certain conditions the control module commands the engine OFF. |
• | The control module turns OFF the malfunction indicator lamp (MIL) after 3 consecutive ignition cycles that the diagnostic runs and does not fail. |
• | A current DTC, Last Test Failed, clears when the diagnostic runs and passes. |
• | A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic. |
• | Clear the MIL and the DTC with a scan tool. |
• | Inspect the TAC module connectors for signs of water intrusion. If water intrusion occurs, multiple DTCs may set without any circuit or component conditions found during diagnostic testing. |
• | When the TAC module detects a condition within the TAC system, more than 1 TAC system related DTC may set. This is due to the many redundant tests run continuously on this system. Locating and repairing 1 individual condition may correct more than 1 DTC. Disconnecting components during testing may set additional DTCs. Remember this if you review the stored information in Capture Info. |
• | If this DTC is determined to be intermittent, refer to Intermittent Conditions . |
The number below refers to the step number on the diagnostic table.
Step | Action | Yes | No |
---|---|---|---|
Schematic Reference: Engine Controls Schematics | |||
1 | Did you perform the Diagnostic System Check-Engine Controls? | Go to Step 2 | |
2 | Is DTC P1518 also set? | Go to Step 3 | |
3 |
Does the scan tool TP sensor 1 and 2 Agree/Disagree parameter indicate Disagree? | Go to Step 5 | Go to Step 4 |
4 |
Does the TP sensor Agree/Disagree parameter change from Agree to Disagree during the above test? | Go to Step 18 | Go to Step 5 |
5 |
Did you find and correct the condition? | Go to Step 20 | Go to Step 6 |
6 | With a DMM, test for a short between the TP sensor 1, 5-volt reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 7 |
7 | With a DMM, test the TP sensor 1 signal circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 8 |
8 | With a DMM, test for a short between the TP sensor 1 signal circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 9 |
9 | With a DMM, test the TP sensor 1 low-reference circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 10 |
10 | With a DMM, test for a short between the TP sensor 1 low-reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 11 |
11 | With a DMM, test the TP sensor 2, 5-volt reference circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 12 |
12 | With a DMM, test for a short between the TP sensor 2, 5-volt reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 13 |
13 | With a DMM, test the TP sensor 2 signal circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 14 |
14 | With a DMM, test for a short between the TP sensor 2 signal circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 15 |
15 | With a DMM, test the TP sensor 2 low-reference circuit for resistance. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 16 |
16 | With a DMM, test for a short between the TP sensor 2 low-reference circuit and all other TAC module circuits. Refer to Circuit Testing and Wiring Repairs in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 17 |
17 | Inspect for poor connections at the harness connector of the TAC module. Refer to Testing for Intermittent Conditions and Poor Connections and Repairing Connector Terminals in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 18 |
18 | Inspect for poor connections at the harness connector of the TP sensor. Refer to Testing for Intermittent Conditions and Poor Connections and Repairing Connector Terminals in Wiring Systems. Did you find and correct the condition? | Go to Step 20 | Go to Step 19 |
19 | Replace the throttle body assembly. Refer to Throttle Body Assembly Replacement . Did you complete the replacement? | Go to Step 20 | -- |
20 |
Does the DTC run and pass? | Go to Step 21 | Go to Step 2 |
With a scan tool, observe the stored information, Capture Info. Does the scan tool display any DTCs that you have not diagnosed? | System OK |