Table 1: | DTC P0171 - Fuel Trim System Lean |
To provide the best possible combination of driveability, fuel economy, and emission control, a closed loop air/fuel metering system is used. While in closed loop, the powertrain control module (PCM) monitors the HO2S 1 signal and adjusts fuel delivery based upon the HO2S signal voltages. A change made to fuel delivery will be indicated by the long and short term fuel trim values which can be monitored with a scan tool. Ideal fuel trim values are around 0 percent if the HO2S signals are indicating a lean condition the PCM will add fuel, resulting in fuel trim values above 0 percent. If a rich condition is detected, the fuel trim values will be below 0 percent, indicating that the PCM is reducing the amount of fuel delivered. If an excessively lean condition is detected, the PCM will set DTC P0171. The PCMs maximum authority to control long term fuel trim allows a range between -30 percent and +22 percent. The PCMs maximum authority to control short term fuel trim allows a range between -27 percent and +27 percent. The PCM monitors fuel trim under various operating conditions (fuel trim cells) before determining the status of the fuel trim diagnostic. The fuel trim cells are as follows:
Cell | Purge ON | Purge OFF |
---|---|---|
Idle (Cell 0) | X | -- |
Decel (Cell 1) | X | -- |
Normal (Cell 2) | X | -- |
Accel (Cell 3) | -- | -- |
High Flow (Cell 4) | -- | -- |
L.T. Fuel Trim average greater than +20% | ||
S.T. Fuel Trim greater than +1% |
The vehicle may have to be operated in all of the above conditions marked by an X, before the PCM determines fuel trim status. The amount of fuel trim deviates from 0 percent in each cell and the amount that each cell is used directly affects whether or not the vehicle must be operated in all of the cells described above to complete the diagnostic.
• | No MAF, MAP, TP, ECT, IAT, CKP, CAM sensor, Misfire, Fuel Injector, VSS, EST, HO2S, EGR, or EVAP DTCs are set. |
• | Engine coolant temperature between 20°C (68°F) and 110°C (230°F). |
• | Intake air temperature is between -18°C (0°F) and 70°C (158°F). |
• | Manifold absolute pressure is between 18 kPa and 80 kPa. |
• | Throttle angle is steady and less than 90 percent. |
• | Vehicle speed is less than 132 km/h (82 mph). |
• | Engine speed is between 600 and 4000 RPM. |
• | BARO is greater than 70 kPa. |
• | Air flow is between 3 gm/s and 150 gm/s. |
• | Long term fuel trim is at or near maximum authority of 20 percent. |
• | Short term fuel trim is greater than -1 percent. |
• | The PCM will illuminate the malfunction indicator lamp (MIL) during the second consecutive trip in which the diagnostic test has been run and failed. |
• | The PCM will store conditions which were present when the DTC set as Freeze Frame and Failure Records data. |
• | The PCM will turn OFF the MIL during the third consecutive trip in which the diagnostic has been run and passed. |
• | The History DTC will clear after 40 consecutive warm-up cycles have occurred without a malfunction. |
• | The DTC can be cleared by using the scan tool. |
Inspect for the following conditions:
• | Heated oxygen sensor wiring -- The sensor pigtail may be routed incorrectly and contacting the exhaust system. |
• | Fuel pressure low -- The system will go lean if pressure is too low. The PCM can compensate for some decrease. However, if fuel pressure is too low, a DTC P0171 may be set. Refer to Fuel System Pressure Test . |
• | Fuel injectors faulty -- Refer to Fuel Injector Replacement . |
• | Vacuum leaks -- Check for disconnected or damaged vacuum hoses and for vacuum leaks at the intake manifold, throttle body, EGR system, and crankcase ventilation system. Refer to Visual/Physical Inspection in Emission Hose Routing Diagram . |
• | Exhaust leaks -- An exhaust leak may cause outside air to be pulled into the exhaust gas stream past the HO2S, causing the system to appear lean. Check for exhaust leaks that may cause a false lean condition to be indicated. Refer to Exhaust Leakage - Not OBD II in Engine Exhaust. |
• | Disconnect the MAF sensor and see if the lean condition is corrected. If so, replace MAF sensor. Refer to Mass Airflow Sensor Replacement . |
• | Fuel contamination -- Water, even in small amounts, can be delivered to the fuel injectors. The water can cause a lean exhaust to be indicated. Excessive alcohol in the fuel can also cause this condition. Refer to Alcohol/Contaminants-in-Fuel Diagnosis . |
Many situations may lead to an intermittent condition. Perform each inspection or test as directed.
Important: : Remove any debris from the connector surfaces before servicing a component. Inspect the connector gaskets when diagnosing or replacing a component. Ensure that the gaskets are installed correctly. The gaskets prevent contaminate intrusion.
• | Loose terminal connection |
- | Use a corresponding mating terminal to test for proper tension. Refer to Testing for Intermittent Conditions and Poor Connections , and to Connector Repairs in Wiring Systems for diagnosis and repair. |
- | Inspect the harness connectors for backed out terminals, improper mating, broken locks, improperly formed or damaged terminals, and faulty terminal to wire connection. Refer to Testing for Intermittent Conditions and Poor Connections , and to Connector Repairs in Wiring Systems for diagnosis and repair. |
• | Damaged harness--Inspect the wiring harness for damage. If the harness inspection does not reveal a problem, observe the display on the scan tool while moving connectors and wiring harnesses related to the sensor. A change in the scan tool display may indicate the location of the fault. Refer to Wiring Repairs in Wiring Systems for diagnosis and repair. |
• | Inspect the powertrain control module (PCM) and the engine grounds for clean and secure connections. Refer to Wiring Repairs in Wiring Systems for diagnosis and repair. |
If the condition is determined to be intermittent, reviewing the Snapshot or Freeze Frame/Failure Records may be useful in determining when the DTC or condition was identified.
The numbers below refer to the step numbers on the Diagnostic Table:
Step | Action | Values | Yes | No | ||||
---|---|---|---|---|---|---|---|---|
1 | Did you perform the Powertrain On Board Diagnostic (OBD) System Check? | -- | ||||||
Are any DTCs set other than P0171? | -- | Go to the applicable DTCs | ||||||
3 |
Are the displayed values at or near the specified values?
| +20% -1% | ||||||
Does the scan tool indicate DTC P0171 failed this ignition? | -- | Go to Diagnostic Aids | ||||||
5 | Visually and physically inspect the vacuum hoses for splits, kinks, and improper connections and repair any problem found. Did your inspection reveal a problem requiring repair? | -- | ||||||
6 | Visually and physically inspect the crankcase ventilation valve for proper installation and repair any problem found. Refer to Crankcase Ventilation System Inspection . Did inspection reveal a problem requiring repair? | -- | ||||||
7 |
Did your inspection of the throttle body reveal a condition requiring repair? | -- | ||||||
8 |
Is a high or unsteady idle being experienced? | -- | ||||||
9 | With the engine idling, observe the IAC display on the scan tool. Is the displayed value more than the specified value? (Value is displayed in counts). | 5 counts | ||||||
10 |
Did your inspection reveal a vacuum leak? | -- | ||||||
11 |
Did the System Check isolate a problem requiring repair? | -- | ||||||
12 | Check the fuel for excessive water, alcohol, or other contaminants. Refer to Alcohol/Contaminants-in-Fuel Diagnosis . Was the fuel contaminated? | -- | ||||||
13 |
Did your inspection reveal a condition requiring repair? | -- | ||||||
14 |
Does S.T. FUEL TRIM value decrease to near the specified value? | 0% | ||||||
15 | Perform the procedure in Fuel System Pressure Test and repair fuel system problem if necessary. Refer to Fuel System Pressure Test . Did the Fuel System Pressure Test isolate a condition requiring repair? | -- | ||||||
16 | Perform the Evaporative Emissions Control (EVAP) Canister Purge Valve System Check and repair EVAP system problem if necessary. Refer to Evaporative Emission Control System Diagnosis . Did EVAP Canister Purge Valve System Check isolate a problem? | -- | ||||||
17 |
Did your inspection reveal a problem? | -- | ||||||
18 | Visually and physically inspect the exhaust manifold for leaks and loose or missing hardware and correct any problem found. Refer to Visual/Physical inspection in Symptoms . Did your inspection reveal a problem? | -- | ||||||
19 | Perform the Injector Balance Test and correct any problem found. Refer to Fuel Injector Balance Test . Did the Injector Balance Test isolate a problem? | -- | ||||||
20 |
Did your inspection reveal a problem? | -- | Go to Diagnostic Aids | |||||
21 | Replace the MAF sensor. Refer to Mass Airflow Sensor Replacement . Is the action complete? | -- | -- | |||||
22 |
Does the scan tool indicate DTC P0171 failed this ignition? | -- | System OK |