• | Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. |
• | Review Strategy Based Diagnosis for an overview of the diagnostic approach. |
• | Diagnostic Procedure Instructions provides an overview of each diagnostic category. |
Circuit | Short to Ground | High Resistance | Open | Short to Voltage | Signal Performance |
---|---|---|---|---|---|
Ignition 1 Voltage | P0102 | P0101 | P0102 | -- | P0101, P0103 |
MAF Sensor Signal | P0102 | P0102 | P0102 | P0102 | P0101, P0103, P1101 |
Ground | -- | P0102 | P0102 | -- | P0102 |
Circuit | Normal Range | Short to Ground | Open | Short to Voltage |
---|---|---|---|---|
Ignition 1 Voltage | -- | 0 Hz | 0 Hz | -- |
MAF Sensor Signal | 1,700-9,500 Hz | 0 Hz | 0 Hz | 0 Hz |
Ground | -- | -- | 0 Hz | -- |
The intake flow rationality diagnostic provides the within-range rationality check for the mass air flow (MAF), manifold absolute pressure (MAP), and the throttle position (TP) sensors. This is an explicit model-based diagnostic containing 4 separate models for the intake system.
• | The throttle model describes the flow through the throttle body and is used to estimate the MAF through the throttle body as a function of barometric pressure (BARO), TP, intake air temperature (IAT), and estimated MAP. The information from this model is displayed on the scan tool as the MAF Performance Test parameter. |
• | The first intake manifold model describes the intake manifold and is used to estimate MAP as a function of the MAF into the manifold from the throttle body and the MAF out of the manifold caused by engine pumping. The flow into the manifold from the throttle uses the MAF estimate calculated from the above throttle model. The information from this model is displayed on the scan tool as the MAP Performance Test 1 parameter. |
• | The second intake manifold model is identical to the first intake manifold model except that the MAF sensor measurement is used instead of the throttle model estimate for the throttle air input. The information from this model is displayed on the scan tool as the MAP Performance Test 2 parameter. |
• | The fourth model is created from the combination and additional calculations of the throttle model and the first intake manifold model. The information from this model is displayed on the scan tool as the TP Performance Test parameter. |
The estimates of MAF and MAP obtained from this system of models and calculations are then compared to the actual measured values from the MAF, MAP, and the TP sensors and to each other to determine the appropriate DTC to fail. The following table illustrates the possible failure combinations and the resulting DTC or DTCs.
MAF Performance Test | MAP Performance Test 1 | MAP Performance Test 2 | TP Performance Test | DTCs Passed | DTCs Failed |
---|---|---|---|---|---|
-- | -- | OK | OK | P0101, P0106, P0121, P1101 | None |
OK | OK | Fault | OK | P0101, P0106, P0121, P1101 | None |
Fault | OK | Fault | OK | P0106, P0121, P1101 | P0101 |
OK | Fault | Fault | OK | P0101, P0121, P1101 | P0106 |
Fault | Fault | Fault | OK | P0121, P1101 | P0101, P0106 |
-- | -- | OK | Fault | P0101, P0106, P1101 | P0121 |
OK | OK | Fault | Fault | P0101, P0106, P0121, P1101 | None |
Fault | OK | Fault | Fault | P0101, P0106, P0121 | P1101 |
-- | Fault | Fault | Fault | P0101, P0106, P0121 | P1101 |
• | DTC P0102, P0103, P0107, P0108, P0112, P0113, P0116, P0117, P0118, P0128, P0335, or P0336 is not set. |
• | The engine speed is between 400-8,192 RPM. |
• | The IAT Sensor parameter is between -7 to +125°C (+19 to +257°F). |
• | The ECT Sensor parameter is between 70-125°C (158-257°F). |
• | This DTC runs continuously within the enabling conditions. |
The engine control module (ECM) detects that the actual measured airflow from MAF, MAP, and TP is not within range of the calculated airflow that is derived from the system of models for more than 2 seconds.
DTCs P0101 and P1101 are Type B DTCs.
DTCs P0101 and P1101 are Type B DTCs.
• | A steady or intermittent high resistance of 15 ohms or greater on the ignition 1 voltage circuit will cause the MAF sensor signal to be increased by as much as 60 g/s. |
• | Depending on the current ambient temperature, and the vehicle operating conditions, a MAF sensor signal circuit that is shorted to the IAT signal circuit will increase or decrease the MAF sensor signal that is interpreted by the ECM. Additionally it may cause a rapid fluctuation in the IAT Sensor parameter. |
Powertrain Diagnostic Trouble Code (DTC) Type Definitions
Control Module References for scan tool information
J 38522 Variable Signal Generator
⇒ | If any of the DTCs are set, refer to DTC P0641 or P0651. |
• | Any damaged components |
• | Loose or improper installation |
• | An air flow restriction |
• | Any vacuum leak |
• | Water intrusion |
• | In cold climates, inspect for any snow or ice buildup |
• | Inspect the MAF sensor element for contamination |
⇒ | If greater than the specified range, test the ground circuit for an open/high resistance. |
⇒ | If the test lamp does not illuminate, test the ignition circuit for a short to ground or an open/high resistance. |
⇒ | If less than the specified range, test the signal circuit for a short to ground or an open/high resistance. If the circuit tests normal, replace the ECM. |
⇒ | If greater than the specified range, test the signal circuit for a short to voltage. If the circuit tests normal, replace the ECM. |
⇒ | If the MAF Sensor parameter is not within the specified range, replace the ECM. |
Perform the Diagnostic Repair Verification after completing the diagnostic procedure.
• | Control Module References for ECM replacement, setup, and programming |